Géométrie et dynamique dans les espaces de modules

Séminaire Mensuel



Séminaire - Novembre


Le séminaire aura lieu un mercredi par mois de 14h à 15h à l'Institut Henri Poincaré à Paris.  Pour télécharger l'affiche du mois: novembre.pdf.




               
               salle Olga Ladyjenskaïa (ex-salle 01)


    Titre: The horocycle flow in the moduli space of translation surfaces.

    Resumé: The group \(SL(2,\mathbb{R})\) acts on the moduli space of translation surfaces. The “magic wand” theorem of Eskin, Mirzakhani, and Mohammadi (~2015) states, in particular, that the closed sets invariant under this action are holomorphic subvarieties. The action of the unipotent upper-triangular subgroup is known as the horocycle flow, by analogy with the horocycle flow on hyperbolic surfaces. One can think of it as a non-homogeneous analogue of unipotent flows, whose dynamics were described by the work of Ratner (~1990). What do the closed invariant sets of the horocycle flow look like? I will discuss some recent work that addresses this question.