Géométrie et dynamique dans les espaces de modules

Séminaire Mensuel


Séminaire à venir - Juin 2025


Le séminaire aura lieu un mercredi du mois (exceptionnellement deux exposés) de 14h à 15h et 15h30 à 16h30 à l'Institut Henri Poincaré à Paris.  Pour télécharger l'affiche du mois: juin.pdf.




               
               salle Olga Ladyjenskaïa (ex-salle 01)


    Titre: The optimal paper Moebius band

    Resumé: If the number \(L\) is large you can take a \(1 \times L\) rectangular strip, smoothly twist it in space, and glue the ends together so as to make an embedded paper Moebius band. If \(L\) is too small this is impossible. In this talk I will explain why \(L > \sqrt{3}\) is a necessary and sufficient condition for the existence of a smoothly embedded paper Moebius band. This is the solution to the 1977 conjecture of B. Halpern and C. Weaver. I will also explain why a sequence of \(L\)-minimizing examples must converge to an equilateral triangle.




               
               salle Olga Ladyjenskaïa (ex-salle 01)


    Titre: Measure and Topological Rigidity Beyond Homogeneous Dynamics

    Resumé: To study the asymptotic behavior of orbits of a dynamical system, one can look at orbit closures or invariant measures. When the underlying system has a homogeneous structure, usually coming from a Lie group, with appropriate assumptions a wide range of rigidity theorems show that ergodic invariant measures and orbit closures have to be well-behaved and can often be classified. I will describe joint work with Brown, Eskin, and Rodriguez-Hertz, which establishes rigidity results for quite general smooth dynamical systems having some hyperbolicity. I will also explain some of the necessary assumptions as well as the homogeneous structures that emerge.