SUR LA TAILLE DES MEMBRES DE L'ENSEMBLE DE MANDELBROT

JEAN-CHRISTOPHE YOCCOZ

- 0.1. Notations et Rappel. On note D le disque unité fermé de \mathbb{C} , $\mathcal{H}=\{z\in\mathbb{C},\ \operatorname{Re} z>$ 0}. Par convention, le module d'un cylindre de hauteur h, de circonférence ℓ est $\frac{h}{\ell}$, de sorte que le module de l'anneau $\{1 < |z| < R\}$ est $\frac{\log R}{2\pi}$. On note mod(A) le module d'un anneau A. On rappelle que si un anneau A contient des anneaux disjoints A_1, \ldots, A_n concentriques à A, on a $mod(A) \ge \sum mod(A_i)$.
- 0.2. Soit f un polynome de degré $d \ge 2$, K son ensemble de Julia rempli, et a un point périodique répulsif de f, de période n.

On suppose K connexe, de sorte que les points critiques de f appartiennent à K, et on choisit une représentation conforme $\varphi: \mathbb{C} - D \to \mathbb{C} - K$ telle que :

$$\varphi(z^d) = f(\varphi(z)), \quad z \in \mathbb{C} - D$$

Appelons rayon externe l'image par φ d'une demi-droite $\{re^{i\theta}: r>1, \theta=\theta_0\}$. L'ensemble des rayons externes aboutissant en a est alors fini, et invariant par f^n ; si q est leur nombre, on les note $(A_i)_{i\in\mathbb{Z}/q\mathbb{Z}}$, de façon que l'indexation préserve l'ordre cyclique. Il existe alors $p \in \mathbb{Z}/q\mathbb{Z}$ tel que $f^n(A_i) = A_{i+p}$, pour tout $i \in \mathbb{Z}/q\mathbb{Z}$.

$$(1) \ 0 < \frac{|\theta|^2}{Re \ \theta} \leqslant \frac{2n \log d}{q}$$

Théorème 1. Il existe
$$\theta \in \mathcal{H}$$
 qui vérifie (1) $0 < \frac{|\theta|^2}{Re \ \theta} \leqslant \frac{2n \log d}{q}$ (2) $(f^n)'(a) = \exp\left(2\pi i \frac{p}{q} + \theta\right)$

Remarque 2. Lorsque $f(z) = z^2 - 2$, d = 2, a = 2, q = 1, n = 1, p = 0, $\theta = \text{Re } \theta = 0$ log 4, on a égalité dans (1).

Démonstration. On suppose que a=0, et (en remplaçant f par f^n) que 0 est un point fixe répulsif de f. On pose $\lambda = f'(0)$. D'après Poincaré, l'unique série formelle H(z) = $z+\ldots$ qui vérifie $H(\lambda z)=f(H(z))$ définit une fonction entière sur $\mathbb C$. Posons U= $\mathbb{C} - H^{-1}(K)$. On a $U = \lambda U$.

Lemme 1. L'application H, restreinte à toute composante connexe W de U est un revêtement universel de W sur $\mathbb{C} - K$.

Démonstration du lemme. Les valeurs critiques de H sont les points des orbites positives des points critiques de f, donc sont contenus dans K. En appliquant f^{-1} , on voit aussi que les valeurs asymptotiques de H sont contenus dans K. Donc $H|_W$ est un revêtement de W sur $\mathbb{C} - K$. Soit C une courbe fermée dans U; si H(C) entoure r fois K, $H(\lambda^{-k}C)$ entoure $\frac{r}{d^k}$ fois K, donc r=0 et toute composante de U est simplement connexe.

^{0.} Le manuscrit original a été converti en 'tex' par Carlos Matheus.

J.-C. YOCCOZ

2

Pour $i \in \mathbb{Z}/q\mathbb{Z}$, notons A'_i la composante connexe de $H^{-1}(A_i)$ qui aboutit en 0 et U_i la composante de U qui contient A'_i . On a :

$$\begin{cases} \lambda A_i' = A_{i+r}' \\ \lambda U_i = U_{i+r} \end{cases}$$

Notons T la multiplication par λ^q , on a $TA_i' = A_i'$, $TU_i = U_i$ pour tout $i \in \mathbb{Z}/q\mathbb{Z}$.

Lemme 2. $U_i/(T^n)_{n\in\mathbb{Z}}$ est un anneau A_i dont le module est egal à $\frac{\pi}{q\log d}$.

Démonstration du lemme. L'action de T sur U_i relève celle de f^q sur $\mathbb{C} - K$, qui est conjugué à $z \mapsto z^{d^q}$ sur $\mathbb{C} - D$; cette dernière action est relevée par la multiplication par d^q dans \mathcal{H} , et le lemme en résulte.

Nous obtenons maintenant le théorème en estimant différemment le module de A.

Choisissons un réel b et des réels $b < b_0 < \cdots < b_{q-1} < b+1$ tels que $\exp(2\pi i b_j) \in A_j'$. Soit $n \in \mathbb{Z}$; on écrit $n = mq+j, m \in \mathbb{Z}, 0 \leqslant j < q$; on note B_n la composante connexe de $\exp^{-1}(A_j')$ qui contient $2\pi i (b_j + m)$, et V_n la composante connexe de $\exp^{-1}(U_j)$ qui contient B_n . Il existe un unique $\theta \in \mathcal{H}$ tel qu'on ait :

$$\begin{cases} \exp\left(2\pi i \frac{p}{q} + \theta\right) = \lambda \\ B_n + q\theta = B_n \\ V_n + q\theta = V_n \end{cases} \forall n \in \mathbb{N}$$

Notons \widetilde{T} la translation par $q\theta$. Alors $V_n/(\widetilde{T}^k)_{k\in\mathbb{Z}}$ est isomorphe à \mathcal{A}_j (avec $n\equiv j$ dans $\mathbb{Z}/q\mathbb{Z}$).

Pour N>0, notons \mathfrak{A}_N l'anneau obtenu en quotientant par \widetilde{T} la bande délimitée par B_0 et B_N . Il est clair qu'on a :

$$\lim_{N \to +\infty} \frac{\operatorname{mod}(\mathfrak{A}_N)}{N} = \frac{\operatorname{Re} \theta}{q^2 |\theta|^2} \times 2\pi$$

D'après le résultat rappelé au début, il existe donc un anneau A_i dont le module vérifie :

$$\operatorname{mod}(\mathcal{A}_j) \leqslant \frac{\operatorname{Re} \theta}{q^2 |\theta|^2} \times 2\pi$$

En utilisant le lemme 2, on obtient l'estimation du théorème.