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1. GENERAL CONSIDERATIONS AND TERMINOLOGY

Let A be an alphabet with d > 2 letters. Let R be a Rauzy class on A and let D be
the associated Rauzy diagram1. The involution T → T−1 for interval exchange maps
corresponds to involutions of A, R, D which exchanges top and bottom2.

Whenever possible, we will use A = Ad
3 in a way such that the involution on A is

m 7→ −m. In this case, we will always assume that

πt(1− d) = 1 = πb(d− 1).

In other terms, we have tα = 1− d, bα = d− 1. Recall that the letters4
tα, bα depend

on R, not on π ∈ R.

Definition 1.1. A pure cycle of D is a cycle made of arrows of the same type (equivalently
of the same name).

Definition 1.2. An element π ∈ R is standard if πt(bα) = πb(tα) = d. It is semi-standard
of top (resp. bottom) type if one has πt(bα) = d but πb(tα) < d (resp. πb(tα) < d but
πt(bα) = d).

Definition 1.3. More generally, the signature of π is the pair (d− πb(αt), d− πt(αb)).

Summarizing, a vertex π is standard if its signature is (d − 1, d − 1), semistandard if
its signature is of the form (d− 1, j) or (j, d− 1), for some j < d− 1. If π has signature
(j, k), the length of the pure cycle of top type (resp. bottom type) through π is equal to j
(resp. k).

Definition 1.4. A semistandard vertex π1 is attached to a standard vertex π0 if it belongs to
one of the pure cycles through π0. Such π0 is unique. A vertex π which is neither standard
nor semistandard is linked to a standard vertex π0 if there exists a semistandard vertex π1
attached to π0 and a pure cycle through π1 containing π.

A vertex π which is neither standard nor semistandard may be linked to 0, 1 or 2 stan-
dard vertices. Once π0 is fixed, π1 is uniquely determined.

Definition 1.5. A vertex π as above is constrained if it is linked to two standard vertices.
It is free if it is not linked to any standard vertex. It is open if it is linked to exactly one
standard vertex and is essential.

Definition 1.6. A vertex π is inessential if its signature has the form (1, j) or (j, 1) (Note
that, except when d = 2, the signature cannot be equal to (1, 1)).

Remark 1.7. Let C be a pure cycle of top type length j. The signatures of the elements of
C are distinct.

1For a general introduction on interval exchange maps and Rauzy classes, see for instance see J-C. Yoccoz,
Interval exchange maps and translation surfaces. Homogeneous flows, moduli spaces and arithmetic, 1–69, Clay
Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010.

2Fickensher proved that each Rauzy class contains a “self-inverse” element, i.e. an element invariant (up to
a permutation I of the alphabet) when exchanging the top line and the bottom line. This corresponding permu-
tation I of A is an involution, and the composition of the top/bottom exchange and I induces an involution of R
and D (J. Fickensher: Self-inverses, Lagrangian permutations and minimal interval exchange transformations
with many ergodic measures, Commun. Contemp. Math. 16 (2014)).

3Ad consists of the d integers in arithmetic progression d− 1, d− 3, . . . , 1− d, see Section 3.
4
tα, bα, the first letters of the top/bottom lines are to be distinguished from αt, αb, the last letters of the

top/bottom lines. Note that J-C Yoccoz frequently uses −∞ and +∞ for tα and bα.
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Let π be a standard vertex. There are
• (d− 2) vertices of each type attached to π, more precisely one for each signature

(d− 1, j) or (j, d− 1) (1 6 j 6 d− 2);
• (d− 3)(d− 2) vertices linked to π.

Therefore the total number of vertices related to π, including π itself, is equal to 1 +
2d− 4 + (d− 2)(d− 3) = (d− 1)(d− 2) + 1.

One may define an unoriented graph5 Γ(D) whose vertices are the standard vertices
of D. For distinct standard vertices π, π′, one has one edge joining π to π′ as there are
constrained vertices linked to π and π′.

Let us explain how to compute the edges of this graph. Let π be a standard vertex. For
each pair (α, β) such that πt(α) < πt(β), πb(α) < πb(β) (in particular, Ωαβ = 0), there
is an edge joining π to another standard vertex π′ computed in the following way. If π
reads as (

tα A α B β C bα

bα X α Y β Z tα

)
,

where A,B,C,X, Y, Z are words (which may be empty), then π′ is equal to(
tα B β A α C bα

bα Y β X α Z tα

)
.

Therefore, there are always 0 or 2 edges between two standard vertices. When there are
two edges, the corresponding constrained vertices are

(
tα A α C bα B β

bα Y β Z tα X α

)
,

(
tα B β C bα A α

bα X α Z tα Y β

)
,

One can therefore omit the double edges in Γ(D), as they are automatic!

Definition 1.8. The default δ(π) of a standard vertex π is the number of pairs (α, β) such
that πt(α) < πt(β), πb(α) < πb(β). The number of zeros in Ωπ is equal to d + 2δ(π).
The default δ(D) of the Rauzy diagram D is the number of edges (not counted twice) in
Γ(D). It is equal to

δ(D) =
1

2

∑
π

δ(π),

where the sum is over the standard vertices of D.

Definition 1.9. A pure cycle is deep if its length is > 1 and it does not contain any semi-
standard vertex. A deep cycle is hanging if erasing its arrows disconnects the Rauzy dia-
gram, rooted otherwise.

Definition 1.10. An automorphism6 of D is a permutation σ of the alphabet A such that,
for all π ∈ R, the pair (πt ◦ σ, πb ◦ σ) is also an element of R7.

5J. Fickenscher proved that Γ(D) is always connected. See [A Combinatorial Proof of the Kontsevich-
Zorich-Boissy Classification of Rauzy Classes, Discrete and Continuous Dynamical Systems - Series A, 2016],
Proposition 5.1.

6Remark that a one-to-one map from D to D that send a “top” edge (resp. bottom) to a “top” edge (resp.
bottom) is an automorphism.

7 The computation of the order of the automorphism group can be found in [C. Boissy: Labeled Rauzy classes
and framed translation surfaces. Ann. Inst. Fourier (Grenoble) 63 (2013)].



6 JEAN-CHRISTOPHE YOCCOZ

Remark 1.11. When a Rauzy diagram has no nontrivial automorphism, the top/bottom
exchanging involution is uniquely defined. This is not always so in presence of non trivial
automorphisms. Indeed, let I be such an involution, induced by an involution τ of A, and
let σ be a permutation of A inducing an automorphism of D. If one has τστ = σ−1, then
τσ is an involution inducing a top/bottom exchanging involution8 of D.

1.1. Height. One defines the top and bottom heights Ht(π), Hb(π) of a vertex (two even
integers > 0) and the height H(C) of a pure cycle (an odd integer > 0).

We write9 −∞ (resp. +∞) for the first letter of the top (resp. bottom) lines of all the
vertices of the diagram.

Let π be a vertex; denote as usual by αt, αb the last letters of the top and bottom lines
of π. If π is a standard vertex, we set Ht(π) = Hb(π) = 0. We now assume that π is not a
standard vertex.

We define Ht(π) as follows. Let dt(1) := πb(αt).
If dt(1) = 1 (i.e if π is a semistandard vertex of top type) let Ht(π) := 2. Otherwise,

define
dt(2) := min

πb(α)>dt(1)
πt(α).

If dt(2) = 1, define Ht(π) := 4. Otherwise, define

dt(3) := min
πt(α)>dt(2)

πb(α).

If dt(3) = 1, define Ht(π) := 6. Otherwise, define

dt(4) := min
πb(α)>dt(3)

πt(α).

We claim that the process must stop with some dt(k) = 1, which corresponds to Ht(π) =
2k. Indeed, as π is irreducible, we must have dt(k+1) < dt(k) as long as dt(k) > 1. This
proves the claim.

It is convenient to define dt(m) for all positive integers. If Ht(π) = 2k, we have
dt(m) = 1 for all m > k.

One defines similarly Hb(π), starting with db(1) := πt(αb).

Proposition 1.12. One has

dt(k + 1) 6 db(k), db(k + 1) 6 dt(k), ∀k > 1

hence
|Ht(π)−Hb(π)| 6 2.

Proof. This is clear by induction on k. �

Definition 1.13. The height H(π) of a vertex π is

H(π) := min(Ht(π), Hb(π)).

The height H(C) of a pure cycle C is

H(C) := 1 + min
π∈C

H(π).

8Any top/bottom exchanging involution of D is obtained in this way since the composition of two such
involutions is an automorphism. Numerical experiment suggests that any top/bottom exchanging involution of D
fixes a vertex, although not necessarily a standard one.

9This notation is not always used.
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Example 1.14. A vertex has height 0 iff it is standard, height 2 iff it is semistandard, height
4 iff it is linked to some standard vertex. A pure cycle has height 1 iff it contains a standard
vertex, height 3 iff it contains a semistandard vertex but no standard vertex.

Proposition 1.15. Let π be a non standard vertex. If Ht(π) = 2k (resp. Hb(π) = 2k),
then the pure cycle of top type (resp. of bottom type) through π has height 2k − 1.

Proof. We have to show that all vertices π′ in the pure cycle Ct of top type through π have
H(π′) > 2k − 2, with at least one of them having H(π′) = 2k − 2. Denote by d′t(m),
d′b(m) the sequences defining Ht(π

′), Hb(π
′). It is clear that we have d′t(m) = dt(m) for

all m > 1, hence Ht(π
′) = Ht(π) for all π′ ∈ Ct. Therefore H(π′) > 2k − 2. Let β be

the letter such that dt(2) = πt(β). By definition of dt(2), there is a vertex π′ ∈ Ct such
that the last letter of the bottom line is β. For this vertex, we have d′b(m) = dt(m+ 1) for
m > 1, hence H(π′) = Hb(π

′) = Ht(π)− 2.
�

Corollary 1.16. Let C be a pure cycle of top type and height 2k − 1 > 3. All vertices
π ∈ C satisfy Ht(π) = 2k, hence H(π) = 2k or 2k − 2, with at least one satisfying
H(π) = Hb(π) = 2k − 2.

Corollary 1.17. Let V be a vertex such that10 Ht(V ) = 2k > 2. There exists a finite
sequence (V0, C1, V2, . . . , C2k−1, V2k = V ) such that

• for 0 6 i 6 k, Vi is a vertex of height 2i;
• for 0 < i 6 k, C2i−1 is a pure cycle of height 2i− 1;
• for 0 < i 6 k, C2i−1 contains V2i−2 and V2i;
• C2k−1 is of top type.

Proof. By induction on k. The case k = 1 is clear. Assume that k > 1 and that the
conclusion of the corollary holds for k − 1. Let V = V2k as in the corollary. Let C2k−1
be the cycle of top type through V . By the proposition, the height of C2k−1 is equal to
2k − 1. By the corollary above, C2k−1 contains a vertex V ′ = V2k−2 with Ht(V

′) =
2k,Hb(V

′) = 2k− 2. We apply the induction hypothesis and get the required conclusion.
�

Proposition 1.18. Let V be a vertex such thatHt(V ) = 4, Hb(V ) = 6. Let V0, C1, V2, C3, V4 =
V ) as in the last corollary. Let α1, α2 be the letters such that πt(α1) = πb(α2) = d. Then
V is inessential iff one has πt(α1) = πt(α2) + 1 in V0.

Proof. Clear �

1.2. Chains.

Definition 1.19. A bimonotonous chain11 is a sequence (V0, C1, . . . , C2k−1, V2k) such that
• for 0 6 2i 6 k, the height of the vertices V2i and V2k−2i is equal to 2i;
• for 0 6 2i < k, the height of the pure cycles C1+2i and C2k−1−2i is equal to

2i+ 1;
• for 0 6 2i < 2k, the pure cycle C1+2i contains V2i and V2i+2;
• the vertices V0, . . . , V2k are distinct;
• the cycles C1, . . . C2k−1 are distinct, with alternating types.

10In the original version, Yoccoz mentions that the corollary must be reformulated since one can have V = V ′

in the proof. Adding the hypothesis H(V ) = Ht(V ) seems to solve this case.
11denoted simply monotonous chain or monotonous cycle in the remaining of the paper
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The length of a monotonous cycle is the number k of pure cycles. It is at least equal
to 4.

Remark 1.20. Let (V0, C1, . . . , C2k−1, V2k) be a monotonous cycle. Then (V2k, C2k−1, . . . , C1, V0)
is also a monotonous cycle, called the opposite cycle.

We will now analyze the monotonous chains of small lengths. In general, we denote
by αi the winner of C1+2i. We have α0 = ±∞ according to the type of C1 and similarly
for αk−1, hence only α1, . . . , αk−2 are really relevant. We will generally assume, unless
stated otherwise, that C1 is of top type.

1.2.1. Monotonous chains of length 4. This has been considered earlier. Such a chain is
determined by a pair (α1, α2) such that we have in V0

πt(α1) < πt(α2), πb(α1) < πb(α2).

We have then12

V0 =

(
−∞ (−∞↗ α1]t (α1 ↗ α2]t (α2 ↗ +∞]t
∞ (∞↗ α1]b (α1 ↗ α2]b (α2 ↗ −∞]b

)
,

V2 =

(
−∞ (−∞↗ α1]t (α1 ↗ α2]t (α2 ↗ +∞]t
∞ (α1 ↗ α2]b (α2 ↗ −∞]b (∞↗ α1]b

)
,

V4 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α2]t
∞ (α1 ↗ α2]b (α2 ↗ −∞]b (∞↗ α1]b

)
,

V6 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α2]t
∞ (α1 ↗ α2]b (∞↗ α1]b (α2 ↗ −∞]b

)
,

V8 =

(
−∞ (α1 ↗ α2]t (−∞↗ α1]t (α2 ↗ +∞]t
∞ (α1 ↗ α2]b (∞↗ α1]b (α2 ↗ −∞]b

)
.

In V8 (i.e, for the opposite chain), the condition on α1, α2 is now

πt(α1) > πt(α2), πb(α1) > πb(α2).

1.2.2. Monotonous chains of length 5. Let (V0, C1, . . . , C9, V10) be a monotonous chain
of length 5. We use the orders induced by V0. One has

V0 =

(
−∞ (−∞↗ α1]t (α1 ↗ +∞]t
+∞ (+∞↗ α1]b (α1 ↗ −∞]b

)
,

V2 =

(
−∞ (−∞↗ α1]t (α1 ↗ +∞]t
+∞ (α1 ↗ −∞]b (+∞↗ α1]b

)
.

The winner α2 of C5 must belong to (α1 ↗ +∞)t. Moreover, as C5 has height 5, it
does not contain any semistandard vertex, hence α2 ∈ (+∞↗ α1]b. Then we have

V4 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α2]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α2 ↗ α1]b

)
.

The winner α3 of C7 must belong to (α2 ↗ α1)b. Moreover, as C7 has height 3, α3

must belong either to (−∞↗ α1]t or to (α2 ↗ +∞]t.

12For instance, (α1 ↗ α2]t means π−1
t (i1 + 1), π−1

t (i1 + 2), . . . , π−1
t (i2), for i1 = πt(α1) and

i2 = πt(α2), see also a similar notation in Section 18.5



EXAMPLES OF RAUZY CLASSES 9

• Assume that α3 ∈ (−∞↗ α1]t. Then we have

V6 =

(
−∞ (−∞↗ α3]t (α3 ↗ α1]t (α2 ↗ +∞]t (α1 ↗ α2]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
,

V8 =

(
−∞ (−∞↗ α3]t (α1 ↗ α2]t (α3 ↗ α1]t (α2 ↗ +∞]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
,

V10 =

(
−∞ (−∞↗ α3]t (α1 ↗ α2]t (α3 ↗ α1]t (α2 ↗ +∞]t
+∞ (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b (α1 ↗ −∞]b

)
.

• Assume that α3 ∈ (α2 ↗ +∞]t. Then we have

V6 =

(
−∞ (−∞↗ α1]t (α2 ↗ α3]t (α3 ↗ +∞]t (α1 ↗ α2]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
,

V8 =

(
−∞ (−∞↗ α1]t (α2 ↗ α3]t (α1 ↗ α2]t (α3 ↗ +∞]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
,

V10 =

(
−∞ (−∞↗ α1]t (α2 ↗ α3]t (α1 ↗ α2]t (α3 ↗ +∞]t
+∞ (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b (α1 ↗ −∞]b

)
.

The model for the first case is

V0 =

(
−∞ α3 α1 α2 +∞
+∞ α2 α3 α1 −∞

)
,

V10 =

(
−∞ α3 α2 α1 +∞
+∞ α2 α1 α3 −∞

)
.

The model for the second case is

V0 =

(
−∞ α1 α2 α3 +∞
+∞ α2 α3 α1 −∞

)
,

V10 =

(
−∞ α1 α3 α2 +∞
+∞ α2 α1 α3 −∞

)
.

We see that the two models are actually symmetric to each other: if a monotonous chain
is of the first type, the opposite chain is of the second type.

Notice also that the two models correspond to the vertices A+, A− of the diagram13

[5, 2](2)(0). The monotonous chain connecting these two vertices may be transformed14

into the concatenation of two chains of length 4: the edges in Γ(D) connecting A+ to S
and S to A−.

13See Sections 2 and 5.2 for the definitions of [5, 2](2)(0), A+ and A−.
14The precise meaning of the word “transformed” is unclear to us.
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1.2.3. More on monotonous chains of length 5. We analyze the chain from the central
cycle C5 which is of top type and height 5. In this cycle, πt stays the same, with πt(α2) =
d. The ordering πb is also determined up to α2, with a residual cyclic ordering on the
remaining letters.

We have πb(−∞) < πb(α2). Otherwise C5 would contain a vertex of height 2.
The letters α1, α3 are distinct and satisfy

πb(αi) > πb(α2), πt(αi) < πt(+∞),

for i = 1, 3. The two models above correspond to πt(α1) < πt(α3) and πt(α1) >
πt(α3).

Considering only arrows with winner in {±∞, α1, α2, α3} one has an embedding of
the diagram [5, 2](2)(0) in a "neighborhood" of the monotonous chain of length 5.

1.2.4. Monotonous chains of length 6. Let (V0, C1, . . . , C11, V12) be a monotonous chain
of length 6.

The beginning of the discussion is the same as before. However, as C7 has now height
5, we must have α3 ∈ (α1 ↗ α2)t, hence

V6 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α3]t (α3 ↗ α2]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
.

The winner α4 of C9 belongs to (α3 ↗ α2)t. As C9 has height 3, we must have
α4 ∈ (α1 ↗ −∞]b. This gives

V8 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α3]t (α4 ↗ α2]t (α3 ↗ α4]t
+∞ (α1 ↗ α4]b (α4 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
,

V10 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α3]t (α4 ↗ α2]t (α3 ↗ α4]t
+∞ (α1 ↗ α4]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b (α4 ↗ −∞]b

)
,

V12 =

(
−∞ (α1 ↗ α3]t (α4 ↗ α2]t (α3 ↗ α4]t (−∞↗ α1]t (α2 ↗ +∞]t
+∞ (α1 ↗ α4]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b (α4 ↗ −∞]b

)
.

The model for this chain is

V0 =

(
−∞ α1 α3 α4 α2 +∞
+∞ α2 α3 α1 α4 −∞

)
,

V12 =

(
−∞ α3 α2 α4 α1 +∞
+∞ α4 α2 α1 α3 −∞

)
.

This model is symmetric with the passage to opposite chains, exchanging top and bot-
tom (because the chain has even length), αi and α5−i. The vertices V0, V12 in the model
correspond to the vertices15 B+, B− of the diagram [6, 3](4)odd. The chain of length 6
connecting B+ and B− can be replaced16 by the two edges in Γ(D) connecting S to B+

and B−. With our notations, recall that we have

S =

(
−∞ α4 α1 α3 α2 +∞
+∞ α1 α4 α2 α3 −∞

)
.

15See Sections 2 and 6 for the definitions of [6, 3](4)odd, B+ and B−.
16The precise meaning of the word “replaced” is unclear to us.
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1.2.5. More on monotonous chains of length 6. We analyze the chain from the central
vertex V6 of height 6.

One has πt(α2) = πb(α3) = d. As C5, C7 have length > 3, one also have

πt(+∞) < πt(α3), πb(−∞) < πb(α2).

On the other hands, as V4, V8 have height 4, one has

πt(+∞) > πt(α1), πb(α1) > πb(α2), πb(−∞) > πt(α4), πb(α4) > πb(α3).

This gives the model for V6:

V6 =

(
−∞ α1 +∞ α3 α4 α2

+∞ α4 −∞ α2 α1 α3

)
.

1.2.6. Monotonous chains of length 7. Let (V0, C1, . . . , C13, V14) be a monotonous chain
of length 7.

The beginning of the discussion, in particular the formula for V6, is the same as before.
The winner α4 of C9 still belongs to (α3 ↗ α2)t. But as C9 has now height 5, we

cannot have α4 ∈ (α1 ↗ −∞]b. Actually, the condition that the pure cycle of bottom type
C7 has height 7 means that no vertex of this cycle has height 4, which is equivalent to

(α1 ↗ −∞]b ∩ (α3 ↗ α2]t = ∅.
We have to consider three cases:

(1) α4 ∈ (+∞↗ α2)b.
We have then

V8 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α3]t (α4 ↗ α2]t (α3 ↗ α4]t
+∞ (α1 ↗ −∞]b (+∞↗ α4]b (α4 ↗ α2]b (α3 ↗ α1]b (α2 ↗ α3]b

)
.

(2) α4 ∈ (α3 ↗ α1)b.
We have then

V8 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α3]t (α4 ↗ α2]t (α3 ↗ α4]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α4]b (α4 ↗ α1]b (α2 ↗ α3]b

)
.

(3) α4 ∈ (α2 ↗ α3)b.
We have then

V8 =

(
−∞ (−∞↗ α1]t (α2 ↗ +∞]t (α1 ↗ α3]t (α4 ↗ α2]t (α3 ↗ α4]t
+∞ (α1 ↗ −∞]b (+∞↗ α2]b (α3 ↗ α1]b (α2 ↗ α4]b (α4 ↗ α3]b

)
.

As C11 has height 3, the winner α5 of this cycle must belong to (−∞↗ α1]t ∪ (α2 ↗
+∞]t. We consider separately two possibilities.

• α5 = α1. This can only happen in cases (1) and (2) above. In this case the two
possible models will have d = 6.

In case (1), we have

V0 =

(
−∞ α1 α3 α4 α2 +∞
+∞ α4 α2 α3 α1 −∞

)
,
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V14 =

(
−∞ α1 α3 α2 α4 +∞
+∞ α4 α3 α2 α1 −∞

)
.

In case (2), we have

V0 =

(
−∞ α1 α3 α4 α2 +∞
+∞ α2 α3 α4 α1 −∞

)
,

V14 =

(
−∞ α1 α3 α2 α4 +∞
+∞ α2 α4 α3 α1 −∞

)
.

These correspond to opposite chains in the diagram [6, 2](1)(0, 1) between the
vertices Q and S−.
• α5 6= α1. In this case the letters αi, 1 6 i 6 5 are all distinct and the model will

have d = 7. There are apparently 12 (!) distinct models
(1)

V0 =

(
−∞ α5 α1 α3 α4 α2 +∞
+∞ α4 α5 α2 α3 α1 −∞

)
, V14 =

(
−∞ α5 α3 α2 α4 α1 +∞
+∞ α4 α2 α1 α3 α5 −∞

)
,

(2)

V0 =

(
−∞ α5 α1 α3 α4 α2 +∞
+∞ α4 α2 α5 α3 α1 −∞

)
, V14 =

(
−∞ α5 α3 α2 α4 α1 +∞
+∞ α4 α3 α2 α1 α5 −∞

)
,

(3)

V0 =

(
−∞ α5 α1 α3 α4 α2 +∞
+∞ α4 α2 α3 α5 α1 −∞

)
, V14 =

(
−∞ α5 α3 α2 α4 α1 +∞
+∞ α4 α1 α3 α2 α5 −∞

)
,

(4)

V0 =

(
−∞ α1 α3 α4 α2 α5 +∞
+∞ α4 α5 α2 α3 α1 −∞

)
, V14 =

(
−∞ α1 α5 α3 α2 α4 +∞
+∞ α4 α2 α1 α3 α5 −∞

)
,

(5)

V0 =

(
−∞ α1 α3 α4 α2 α5 +∞
+∞ α4 α2 α5 α3 α1 −∞

)
, V14 =

(
−∞ α1 α5 α3 α2 α4 +∞
+∞ α4 α3 α2 α1 α5 −∞

)
,

(6)

V0 =

(
−∞ α1 α3 α4 α2 α5 +∞
+∞ α4 α2 α3 α5 α1 −∞

)
, V14 =

(
−∞ α1 α5 α3 α2 α4 +∞
+∞ α4 α1 α3 α2 α5 −∞

)
,

(7)

V0 =

(
−∞ α5 α1 α3 α4 α2 +∞
+∞ α2 α5 α3 α4 α1 −∞

)
, V14 =

(
−∞ α5 α3 α2 α4 α1 +∞
+∞ α2 α4 α3 α1 α5 −∞

)
,

(8)

V0 =

(
−∞ α5 α1 α3 α4 α2 +∞
+∞ α2 α3 α4 α5 α1 −∞

)
, V14 =

(
−∞ α5 α3 α2 α4 α1 +∞
+∞ α2 α4 α1 α3 α5 −∞

)
,

(9)

V0 =

(
−∞ α1 α3 α4 α2 α5 +∞
+∞ α2 α5 α3 α4 α1 −∞

)
, V14 =

(
−∞ α1 α5 α3 α2 α4 +∞
+∞ α2 α4 α3 α1 α5 −∞

)
,
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(10)

V0 =

(
−∞ α1 α3 α4 α2 α5 +∞
+∞ α2 α3 α4 α5 α1 −∞

)
, V14 =

(
−∞ α1 α5 α3 α2 α4 +∞
+∞ α2 α4 α1 α3 α5 −∞

)
,

(11)

V0 =

(
−∞ α5 α1 α3 α4 α2 +∞
+∞ α2 α4 α5 α3 α1 −∞

)
, V14 =

(
−∞ α5 α3 α2 α4 α1 +∞
+∞ α2 α1 α4 α3 α5 −∞

)
,

(12)

V0 =

(
−∞ α1 α3 α4 α2 α5 +∞
+∞ α2 α4 α5 α3 α1 −∞

)
, V14 =

(
−∞ α1 α5 α3 α2 α4 +∞
+∞ α2 α1 α4 α3 α5 −∞

)
.

Here
• (1) and (12) are opposite chains in the diagram [7, 3](1)(3);
• (4) and (11) are opposite chains in the diagram [7, 3](3)(1);
• (2) and (9) are opposite chains in the diagram [7, 3](4)(0)O;
• (6) and (7) are opposite chains in the diagram [7, 3](4)(0)O;
• (3) and (9) are opposite chains in the diagram [7, 2](1)(1, 02);
• (5) and (8) are opposite chains in the diagram [7, 2](1)(1, 02);

1.2.7. More on monotonous chains of length 7. We analyze the chain from the central
cycle C7 of bottom type, height 7, winner α3. The ordering πb is the same for all elements
of the cycle, with last letter α3. The top ordering πt is well-defined up to α3 and is a cyclic
ordering for larger elements.

One has πt(+∞) < πt(α3). Also, as C7 has height 7, no letter α satisfies both πt(α) >
πt(α3) and πb(α) < πb(−∞). One has πt(α2) > πt(α3) and also πt(α4) > πt(α3). One
has also

πb(α1) > πb(α2), πt(α1) < πt(+∞), πb(α5) > πb(α4), πt(α5) < πt(+∞).

The letters αi are distinct except possibly α1 = α5.

1.2.8. Monotonous chains of length 8. We analyze the chain (V0, C1, . . . , C15, V16) from
the central vertex V8. The only possible model is

V8 =

(
−∞ α1 +∞ α5 α6 α3 α2 α4

+∞ α6 −∞ α2 α1 α4 α5 α3

)
.

This vertex belongs to a diagram [8, 4](6) which is not hyperelliptic17.

For a monotonous chain of length 10 the model for V10 is

V10 =

(
−∞ α1 +∞ α7 α8 α3 α2 α5 α6 α4

+∞ α8 −∞ α2 α1 α6 α7 α4 α3 α5

)
.

The stratum is [10, 4](2, 2, 2).
For a monotonous chain of length 12 the model for V12 is

V12 =

(
−∞ α1 +∞ α9 α10 α3 α2 α7 α8 α5 α4 α6

+∞ α10 −∞ α2 α1 α8 α9 α4 α3 α6 α7 α5

)
.

The stratum is [12, 6](10), not hyperelliptic.

17In the original version, Yoccoz wrote as a comment: “computation seems to indicate the even component”
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Considering only monotonous chains of even length `, there is a periodicity of order
6: When ` = 6m + 4 (with m > 0) , the stratum for the model is [6m + 4, 3m +
1](2m, 2m, 2m). When ` = 2m (m > 1), with m + 1 6= 0 mod.3, the stratum is
[2m,m](2m− 2). In all cases, one should compute the connected component!!

2. LISTS OF RAUZY DIAGRAMS FOR SMALL d

We omit below the hyperelliptic diagrams and the genus 1 diagrams, which take care of
all diagrams for d 6 4. The notation18 is

[d, g](κ0)(κ1, . . . , κs−1).

Here, d is the size of the alphabet, g is the genus, κi are the orders of the zeros at the
s marked points; κ0 is the order of the zero at the marked point which is the root of the
Rauzy-Veech algorithm. The other κi (if any) are arranged in nonincreasing order. If
necessary, one adds a parity sign O for odd or E for even19.

• [5, 2](0)(2), [5, 2](2)(0).
• [6, 3](4)O, [6, 2](0)(1, 1), [6, 2](1)(1, 0), [6, 2](0)(2, 0), [6, 2](2)(0, 0).

3. HYPERELLIPTIC CLASSES

This is copied from [AMY]20.
Let d > 2 be an integer. Let Ad be the alphabet whose d elements are the integers in

arithmetic progression d − 1, d − 3, . . . , 1 − d. Let ι be the involution k 7→ −k of Ad.
We define inductively the hyperelliptic Rauzy class Rd over Ad and the associated Rauzy
diagram Dd. The Rauzy class Rd contains a central vertex π∗ = π∗(d) defined by

π∗t (k) =
1

2
(d+ 1 + k), π∗b (k) =

1

2
(d+ 1− k).

For d = 2, this is the only vertex. For d > 2, Rd+1 is the disjoint union of π∗(d + 1),
jt(Rd) and jb(Rd), where the injective maps jt, jb are defined as follows: for π ∈ Rd,
writing jt(π) = tπ, jb(π) = bπ, we have

tπt(−d) = 1, tπb(−d) = πb(d− 3),

tπt(k) = 1 + πt(k − 1),

tπb(k) =

{
πb(k − 1) if πb(k − 1) < πb(d− 3),

πb(k − 1) + 1 if πb(k − 1) > πb(d− 3),

for 2− d 6 k 6 d, and

bπb(d) = 1, bπt(d) = πt(3− d),

bπb(k) = 1 + πb(k + 1),

bπt(k) =

{
πt(k + 1) if πt(k + 1) < πt(3− d),

πt(k + 1) + 1 if πb(k + 1) > πt(3− d),

for −d 6 k 6 d− 2.

18J-C Yoccoz also frequently uses the notation [d, g](κ0)(κn1
1 , . . . , κ

ns−1
s−1 ), meaning that each κi appears

ni times.
19Note that a Rauzy class is uniquely defined, up to a change of alphabet, by the root κ0, the stratum of the

moduli space of Abelian differential (i.e. {κ0, . . . , κs−1}), and the corresponding connected component of the
stratum (hyperelliptic, odd or even spin structure).

20A. Avila, C. Matheus, J-C. Yoccoz: Zorich conjecture for hyperelliptic Rauzy-Veech groups. Math. Ann.
370 (2018)
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The one-to-one maps Rt, Rb from Rd to itself determining the arrows of Dd verify{
Rt(π

∗(d+ 1)) = jt(π
∗(d)),

Rb(π
∗(d+ 1)) = jb(π

∗(d)),{
Rt ◦ jb ◦R−1t = jb,
Rb ◦ jt ◦R−1b = jt,{

Rt ◦ jt ◦R−1t (π) = jt(π), π 6= π∗(d),
Rb ◦ jb ◦R−1b (π) = jb(π), π 6= π∗(d),

Rt ◦ jt ◦R−1t (π∗(d)) = π∗(d+ 1) = Rb ◦ jb ◦R−1b (π∗(d)).

The involution Id on Rd defined by

Id((πt, πb)) := (πb ◦ ι, πt ◦ ι)
satisfies

Id(π
∗(d)) = π∗(d), Id+1 ◦ jb ◦ Id = jt,

Id ◦Rb ◦ Id = Rt.

Remark 3.1. There is a natural one-to-one correspondenceWd from the elements of Rd to
the words in {t, b} of length < d−1: namely, Wd(π

∗(d)) is the empty word, Wd(jt(π)) is
the word tWd−1(π) and Wd(jb(π)) is the word bWd−1(π). The involution Id corresponds
to the exchange of the letters t, b. One has also

Wd(Rt(π)) = Wd(π)t, Wd(Rb(π)) = Wd(π)b, if |Wd(π)| < d− 2.

When |Wd(π)| = d − 2, one writes Wd(π) = W ′tm with m > 0 and W ′ empty or
finishing by b; one has then Wd(Rt(π)) = W ′. Similarly for Wd(Rb(π)).

It is also not difficult to recover from Wd(π) the winners of the arrows starting from
π: the winner of the arrow of top type starting from π is the letter d − 1 − 2wb(π) of
Ad, where wb(π) is the number of occurrences of b in Wd(π); similarly, the winner of the
arrow of bottom type starting from π is the letter 1− d + 2wt(π) of Ad. Observe that we
have always

d− 1− 2wb(π) > 1− d+ 2wt(π).

We now state another property of the hyperelliptic Rauzy diagrams which will be useful:
given any vertex π ∈ Rd, there is a unique oriented simple path in Dd from π∗(d) to π.
(A path is simple if it does not pass more than once through any vertex). Indeed, this is
best seen through the representation of the vertices given in the remark above: the length
of such a path is |Wd(π)| and the path itself is through the sequence of initial subwords of
Wd(π). We will denote by γ∗(π) this path.

Observe that all simple loops of positive length in Rd are elementary, i.e made of arrows
of the same type (and consequently with the same winner). For any such loop γ, there is a
unique vertex π such that γ passes through π but γ∗(π) does not contain any arrow of γ;
one checks that π is the vertex of γ such that |Wd(π)| is minimal. One has

|γ|+ |Wd(π)| = d− 1.
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The hyperelliptic diagrams have no non trivial automorphisms.

4. GENUS 1 DIAGRAMS

There is one genus one diagram for each d > 2. For d = 2 and d = 3, they are also
hyperelliptic. To describe these diagrams, we choose an alphabet with two special letters
ℵ = tα and i = bα. We denote by A∗ the subset formed by the other d− 2 letters.

The standard vertices are in one-to-one correspondence with the bijections between A∗

and {2, . . . , d− 1}: for standard vertices πt and πb coincide on A∗.
Let π be a standard vertex. The default takes its maximal value 1/2(d− 2)(d− 3). All

vertices which are linked to π are constrained. Therefore there is no free vertex, nor deep
cycle, in D. The edges of Γ(D) from π are in one-to-one correspondence with pairs of
integers (a, b) with 2 6 a < b 6 d− 1. The other extremity of the (a, b)-edge is the vertex
π′ satisfying, for α ∈ A∗

π′(α) =

 π(α) + b− a if 2 6 π(α) 6 a,
π(α)− a+ 1 if a < π(α) 6 b,
π(α) if b < π(α) 6 d− 1.

The total number of standard vertices is (d− 2)!. The default of D is

δ(D) =
1

4
(d− 2)(d− 3)(d− 2)!.

The symmetry group of the diagram is the symmetric group of A∗.
The involution of D exchanges ℵ and i and fixes each letter in A∗. It fixes every

standard vertex of D. For every pair of standard vertices which are the extremities of an
edge of Γ(D), the involution exchanges the two vertices which are linked to both of them.

The genus 1 diagrams have large groups of automorphisms, isomorphic to the group of
permutations of A∗.

The total number of vertices is

N(D) =
1

2
d!.

5. THE TWO DIAGRAMS WITH d = 5, g = 2 AND A DOUBLE ZERO

5.1. The diagram [5, 2](0), (2). The automorphism group of this diagram is cyclic of
order 3. Instead of a canonical involution, there are three of them. We choose as alphabet
−1 = tα, 1 = bα, a, b, c.

There are three standard vertices

Sc :=

(
−1 a b c 1

1 b a c −1

)
and the two others deduced by cyclic permutation of a, b, c. Each of the three involu-

tion fixes one standard vertex and exchanges the other two. The involution Ic fixing Sc
exchanges the letters −1 and 1, a and b, and fixes c. It has two other fixed points, which
are the two constrained vertices linked to Sa and Sb.

The diagram Γ(D) is the full graph on 3 vertices.
The default of each standard vertex is equal to 2, hence the default of the diagram is

equal to 3.
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Of the 3 pairs of symmetric vertices linked to a standard vertex, 1 is inessential and the
other two are constrained. Therefore there are neither free vertices nor deep cycles. The
total number of constrained vertices is equal to 6.

The total number of vertices is equal to

N(D) = 3× [(d− 1)(d− 2) + 1]− 6 = 33.

5.2. The diagram [5, 2](2), (0). We use as alphabet A5. The involution is j 7→ −j. There
are three standard vertices. One is the unique fixed point of the involution:

S :=

(
−4 0 −2 2 4

4 0 2 −2 −4

)
.

The other two form a symmetric pair

A+ :=

(
−4 −2 0 2 4

4 2 −2 0 −4

)
, A− :=

(
−4 −2 2 0 4

4 2 0 −2 −4

)
.

The defaults are δ(S) = 2, δ(A+) = δ(A−) = 1. The default of the diagram is equal
to 2.

• Of the 6 vertices linked to S, 2 are inessential and 4 are constrained; 2 of them are
linked to A+ and 2 to A−.

• Of the 6 vertices linked to A+ (or A−), 2 are inessential and 2 are constrained,
linked to S.

There are 2 deep cycles symmetric to each other. Each has length 2 and their vertices
are linked to (A+, A−).

The total number of constrained vertices is equal to 4. The total number of vertices is

N(D) = 3× [(d− 1)(d− 2) + 1]− 4 = 35.

This Rauzy diagram has no nontrivial automorphism.

5.3. More on the diagram [5, 2](2), (0). We change the alphabet to A = {±∞,±1, 0}
so that

S :=

(
−∞ 0 −1 1 +∞
+∞ 0 1 −1 −∞

)
.

Remark 5.1. It is also better to rename A+ as A(−1) and A− as A(1) but we don’t do
that at the moment.

The diagram is essentially made of
• 4 monotonous chains of length 4. Two chains connect the top cycle through
A+/A− to the bottom cycle through S. The last two pure cycles in these chains are
the same. The other two chains connect the bottom cycle through A+/A− to the
top cycle through S, and are the images of the first two chains by the involution.

• 2 monotonous chains of length 5. They connect the top (resp. bottom) cycles
through A+ and A−.

We have omitted in this description the pure cycles of length 1.
We compute the winners of the pure cycles of length > 1.
The winner of a pure cycle of top type through a standard vertex is +∞. The winner of

a pure cycle of bottom type through a standard vertex is −∞.
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The monotonous chains of length 4 from the bottom cycle through S to the top cycles
throughA+ (resp. A−) have non trivial successive winners 0 (for both) and−1 (resp. +1).

The monotonous chain of length 5 from the top cycle through A+ to the top cycle
through A− has non trivial successive winners 0, 1,−1.

The winners in the other chains are obtained from the involution.

6. THE DIAGRAM [6, 3](4) ODD

6.1. Standard vertices. We use the alphabet {±∞,±2,±1}. There are no nontrivial
automorphism. The canonical involution sends k to −k.

There are 7 standard vertices. One is fixed by the canonical involution of D

S :=

(
−∞ −2 2 −1 1 ∞
∞ 2 −2 1 −1 −∞

)
.

The others 6 come into 3 pairs of symmetric vertices

A+ :=

(
−∞ 2 −1 1 −2 ∞
∞ 1 2 −2 −1 −∞

)
, A− :=

(
−∞ −1 −2 2 1 ∞
∞ −2 1 −1 2 −∞

)
,

B+ :=

(
−∞ 2 −1 −2 1 ∞
∞ 1 −1 2 −2 −∞

)
, B− :=

(
−∞ −1 1 −2 2 ∞
∞ −2 1 2 −1 −∞

)
,

C+ :=

(
−∞ 2 1 −1 −2 ∞
∞ 1 −2 −1 2 −∞

)
, C− :=

(
−∞ −1 2 1 −2 ∞
∞ −2 −1 1 2 −∞

)
.

The involution has another fixed point, which is essential.

F :=

(
−∞ 2 ∞ −1 −2 1
∞ −2 −∞ 1 2 −1

)
.

It is free of signature (2, 2). There are 4 other free vertices, of signature (3, 1), (1, 3),
(1, 2), (2, 1) respectively, which are inessential and form two symmetric pairs with respect
to the involution.

• Of the 12 vertices linked to S, 4 are inessential and 8 are constrained; of these, 2
are linked to A+, 2 to A−, 2 to B+ and two to B−. One has δ(S) = 4.

• Of the 12 vertices linked to A−, 3 are inessential, 6 are constrained and 3 are
neither constrained nor inessential. Among the 6 constrained vertices, 2 are linked
to S, 2 to C+ and 2 to B+. One has δ(A+) = δ(A−) = 3.

• Of the 12 vertices linked to B+, 4 are inessential, 4 are constrained and 4 are
neither constrained nor inessential. Among the 4 constrained vertices, 2 are linked
to S and 2 to A−. One has δ(B+) = δ(B−) = 2.

• Of the 12 vertices linked to C+, 4 are inessential, 4 are constrained and 4 are
neither constrained nor inessential. Among the 4 constrained vertices, 2 are linked
to A− and 2 to C−. One has δ(C+) = δ(C−) = 2.

• The statistics for A+, B−, C− are deduced from the involution.
The total number of constrained vertices is thus equal to 18. The total number of vertices

is equal to
N(D) = 7× [(d− 1)(d− 2) + 1]− 18 + 5 = 134.

The default δ(D) of D is equal to 9.
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6.2. Deep cycles. There are 6 pairs of symmetric deep cycles. Only one of them is hang-
ing. Of the 5 pairs of deep cycles which are rooted:

• 2 pairs have length 2, containing two linked vertices, respectively to
(A−, C−), (A+, C+), (B+, A+), (B−, A−).

• one pair has length 3, containing one free inessential vertex and two linked ver-
tices, respectively to (B+, C+) and (B−, C−)21.

• one pair has length 3, containing three linked vertices to (A−, B−, C−) and (A+, B+, C+).
• The last two symmetric cycles are attached at the fixed point F of the involution.

They have length 2, the other vertex is linked to B+/B−.

This Rauzy diagram has no non trivial automorphism.

6.3. Analysis by increasing height. One has 7 standard vertices of height 0. Each pro-
duces 2 pure cycles of height 1, 14 in total.

Each pure cycle of height 1 contains one standard vertex and 4 vertices of height 2.
Therefore there are 56 vertices of height 2.

Through each vertex of height 2, there is one pure cycle of height 1 and one pure cycle
of height 3. Therefore there are 56 pure cycles of height 3. They have length 1, 2, 3 or 4,
with 14 cycles of each length.

A cycle of height 3, length `, contains one vertex of height 2 and `−1 vertices of height
4. However these vertices are counted twice when both Ht and Hb are equal to 4. From
the analysis of the diagram Γ(D) in the previous subsection, there are 18 vertices V with

Ht(V ) = Hb(V ) = 4

which correspond to the 9 edges of Γ(D). For the remaining vertices of height 4, there
are 24 with Ht(V ) = 4, Hb(V ) = 6, and 24 with Ht(V ) = 6, Hb(V ) = 4. The total
number of vertices of height 4 is therefore equal to 66.

Consider the pure cycles of top type, height 5. Each contains at least one vertex with
Ht(V ) = 6, Hb(V ) = 4. But some of these cycles may contain several such vertices.
Actually, 13 of these cycles have length 1, hence are not concerned by this problem. There
are actually 6 cycles of top type, height 5, length > 1.

• Two have length 2, containing two vertices of height 4.
• One has length 2, containing one vertex of height 4 and one inessential vertex of

height 6.
• One has length 2, containing one vertex of height 4 and the essential vertex F of

height 6.
• One has length 3, containing three vertices of height 4.
• One has length 3, containing two vertices of height 4 and one inessential vertex of

height 6.

There are 5 vertices of height 6: the vertex F has Ht(F ) = Hb(F ) = 6. The other 4
vertices of height 6 are inessential. Two have Ht(F ) = 6, Hb(F ) = 8 and the other two
have Ht(F ) = 8, Hb(F ) = 6.

Finally, there are 4 pure cycles of height 7, two of each type. All have length 1.

21This pair should be hanging too.
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7. THE DIAGRAM [6, 2](2)(0, 0)

We choose A6 for alphabet. There is one non trivial automorphism σ of D, associated to
the transposition 1↔ −1. There are two choices of top/bottom exchanging involutions: I0
is induced by the involution (−5, 5)(−3, 3)(−1, 1) while I1 is induced by (−5, 5)(−3, 3).

There are 12 standard vertices. Two of them are fixed by I0 and exchanged by I1

A0 :=

(
−5 −3 1 3 −1 5

5 3 −1 −3 1 −5

)
, A1 :=

(
−5 −3 −1 3 1 5

5 3 1 −3 −1 −5

)
.

These vertices have default 2.
Another two are fixed by I1 and exchanged by I0.

D0 :=

(
−5 −1 1 −3 3 5

5 −1 1 3 −3 −5

)
, D1 :=

(
−5 1 −1 −3 3 5

5 1 −1 3 −3 −5

)
.

These vertices have default 5.
Another four vertices have default 3:

B+
0 :=

(
−5 −3 3 1 −1 5

5 3 1 −1 −3 −5

)
, B−0 :=

(
−5 −3 −1 1 3 5

5 3 −3 −1 1 −5

)
,

B+
1 :=

(
−5 −3 3 −1 1 5

5 3 −1 1 −3 −5

)
, B−1 :=

(
−5 −3 1 −1 3 5

5 3 −3 1 −1 −5

)
.

The last four standard vertices have default 4:

C+
0 :=

(
−5 1 −3 −1 3 5

5 1 3 −3 −1 −5

)
, C−0 :=

(
−5 −1 −3 3 1 5

5 −1 3 1 −3 −5

)
,

C+
1 :=

(
−5 −1 −3 1 3 5

5 −1 3 −3 1 −5

)
, C−1 :=

(
−5 1 −3 3 −1 5

5 1 3 −1 −3 −5

)
.

The non trivial automorphism exchanges22 B+
0 and B+

1 , B−0 and B−1 , C+
0 and C+

1 , C−0
and C−1 . The involution I0 exchanges B+

0 and B−0 , B+
1 and B−1 , C+

0 and C−0 , C+
1 and

C−1 .

Of the 12 vertices linked to any standard vertex, 2 are inessential. The edges of Γ(D)
are as follows:

• (A0 ↔ C+
1 ), (A0 ↔ C−1 ), (A1 ↔ C+

0 ), (A1 ↔ C−0 );
• (B+

0 ↔ C−0 ), (B+
0 ↔ C−1 ), (B+

0 ↔ D1), (B−0 ↔ C+
0 ), (B−0 ↔ C+

1 ), (B−0 ↔ D0);
• (B+

1 ↔ C−0 ), (B+
1 ↔ C−1 ), (B+

1 , D0), (B−1 ↔ C+
0 ), (B−1 ↔ C+

1 ), (B−1 ↔ D1);
• (C+

0 ↔ D0), (C−0 ↔ D1), (C+
1 ↔ D1), (C−1 ↔ D0);

• (D0 ↔ D1).

There are 18 linked open vertices of each type. There are no free vertices.
There are 8 pairs of symmetric deep cycles, all rooted. Their vertices are all linked. Of

the deep cycles of top type
• 6 have length 2 with vertices linked to (A0, B

+
1 ), (A0, B

−
0 ), (A1, B

+
0 ), (A1, B

−
1 ),

(C+
0 , C

−
1 ), (C−0 , C

+
1 );

• 2 have length 3 with vertices linked to (A0, B
+
0 , B

−
1 ), (A1, B

+
1 , B

−
0 ).

22D0 and D1 are exchanged too.
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The default of the diagram is equal to 21. The total number of vertices is

N(D) = 12× [(d− 1)(d− 2) + 1]− 42 = 210.

It is probably useful to notice that 210 = 6 × 35, where 35 was the number of vertices
for [5, 2](2)(0).

8. THE DIAGRAM [6, 2](0), (2, 0)

The automorphism group of this diagram is cyclic of order 3. Instead of a canonical
involution, there are three of them. We choose as alphabet {−1 = tα, 1 = bα, 0, a, b, c}.
The automorphisms fix −1, 0, 1 and permute cyclically a, b, c.

There are also 3 top/bottom exchanging involutions Ia, Ib, Ic. The involution Ia ex-
changes −1 and 1, b and c, and fixes 0, a.

The diagram has 12 standard vertices.
The involution Ia fixes two standard vertices:

Pa :=

(
−1 0 b c a 1

1 0 c b a −1

)
, Qa :=

(
−1 b c a 0 1

1 c b a 0 −1

)
,

and similarly for Ib, Ic. The vertices Pa, Pb, Pc are permuted cyclically by the automor-
phism group, as are Qa, Qb, Qc. The involution Ia exchanges Pb and Pc, Qb and Qc.

The remaining standard vertices are S+
a , S

+
b , S

+
c , S

−
a , S

−
b , S

−
c . One has

S+
a :=

(
−1 b 0 c a 1

1 c b 0 a −1

)
.

The automorphism group permutes cyclically S+
a , S

+
b , S

+
c and S−a , S

−
b , S

−
c . The invo-

lution Ia exchanges S+
a and S−a , S+

b and S−c , S+
c and S−b .

• Of the 12 vertices linked to Pa, 10 are constrained and 2 are inessential. One has
δ(Pa) = 5.
• Of the 12 vertices linked to Qa, 10 are constrained and 2 are inessential. One has
δ(Qa) = 5.
• Of the 12 vertices linked to S+

a , 8 are constrained, 2 are inessential and 2 are open.
One has δ(S+

a ) = 4.
The default of the diagram is δ(D) = 27.
The edges of Γ(D) are as follows
• (Pa ↔ Qa), (Pa ↔ S+

a ), (Pa ↔ S−a ), (Pa ↔ S−b ), (Pa ↔ S+
c );

• (Pb ↔ Qb), (Pb ↔ S+
b ), (Pb ↔ S−b ), (Pb ↔ S−c ), (Pb ↔ S+

a );
• (Pc ↔ Qc), (Pc ↔ S+

c ), (Pc ↔ S−c ), (Pc ↔ S−a ), (Pc ↔ S+
b );

• (Qa ↔ Qb), (Qb ↔ Qc), (Qc ↔ Qa);
• (Qa ↔ S−b ), (Qb ↔ S−c ), (Qc ↔ S−a ), (Qa ↔ S+

c ), (Qb ↔ S+
a ), (Qc ↔ S+

b );
• (S+

a ↔ S−c ), (S+
b ↔ S−a ), (S+

c ↔ S−b ).
There are no free vertices. There are 6 deep cycles, all of length 2. Their vertices are

linked to (S+
a , S

−
a ), (S+

b , S
−
b ), (S+

c , S
−
c ) (twice each).

The total number of vertices is equal to

N(D) = 12× [(d− 1)(d− 2) + 1]− 54 = 198.

Again, one should notice that 198 = 6× 33.
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9. THE DIAGRAM [6, 2](0), (1, 1)

The automorphism group23 is cyclic of order 4. We choose for alphabet {−1 = tα, 1 =

bα, a, b, c, d}. There are two top/bottom exchanging involutions I0, I1. The first exchanges
−1 and 1, a and c, and fixes b, d. The second exchanges −1 and 1, b and d, and fixes a, c.
The generator σ of the automorphism group permutes cyclically a, b, c, d in this order.

There are 4 standard vertices Sa, Sb, Sc, Sd permuted cyclically by the automorphism
group. One has

Sa :=

(
−1 b c d a 1

1 d c b a −1

)
.

The involution I0 fixes Sb and Sd, exchanges Sa and Sc. The involution I1 fixes Sa and
Sc, exchanges Sb and Sd.

Of the 12 vertices linked to Sa, 6 are constrained, 4 are inessential and 2 are open.
Similarly for Sb, Sc, Sd. The default of every standard vertex is equal to 3. The default
δ(D) of the diagram is equal to 6.

The graph Γ(D) is the full graph on 4 vertices.
There are 8 free vertices, all inessential. There are also 8 deep cycles, each of length 2,

consisting of one of the open linked vertices and one of the free vertices.
The total number of vertices is equal to

N(D) = 4× [(d− 1)(d− 2) + 1]− 12 + 8 = 80.

10. THE DIAGRAM [6, 2](1), (0, 1)

There are no non trivial automorphisms. We choose for alphabet {−2 = tα, 2 =

bα,−1, 1, a, b}. The involution fixes a and b and exchanges ±1,±2. There are 4 stan-
dard vertices, denoted by P,Q, S+, S−. The involution fixes P , Q, exchanges S+ and
S−.

One has

P :=

(
−2 a −1 b 1 2

2 a 1 b −1 −2

)
, Q :=

(
−2 −1 b a 1 2

2 1 b a −1 −2

)
,

S+ :=

(
−2 −1 a b 1 2

2 1 b −1 a −2

)
, S− :=

(
−2 −1 b 1 a 2

2 1 a b −1 −2

)
.

• Of the 12 vertices linked to P , 6 are constrained, 4 are inessential and 2 are open.
One has δ(P ) = 3;

• Of the 12 vertices linked to Q, 2 are constrained, 4 are inessential and 6 are open.
One has δ(P ) = 1;

• Of the 12 vertices linked to S±, 2 are constrained, 4 are inessential and 6 are open.
One has δ(S±) = 1.

The default δ(D) of the diagram is equal to 3. In Γ(D), the only edges are the ones
linking P to every other vertex.

There are 12 free vertices, 8 of them inessential and 16 deep cycles.
• Each of the two open vertices linked to P belongs to a deep cycle of length 2,

whose other vertex is free and inessential.

23From [Boissy] (see footnote 7) we see that the group has order 4. One can obtain a generator σ by consid-
ering the monotonous chain of length 4 corresponding to the pair (a, b).
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• There are two deep cycles of length 2 (one of each type), whose vertices are open
and linked to (Q,S+); similarly ,there are two deep cycles of length 2, whose
vertices are open and linked to (Q,S−);

• There are two deep cycles of length 3, one of each type, containing one vertex
linked to Q, one vertex which is free but inessential, and one free vertex F±;

• There are two other deep cycles of length 3, one of each type, containing one
vertex linked to S+, one vertex linked to S− and one free inessential vertex;

• There is one deep cycle of length 2 containing a vertex linked to S+ and a free
inessential vertex; similarly for S−;

• Finally, there are two other symmetric free essential verticesG±. Both deep cycles
through G+ have length 2, the other vertex being F+ (for one cycle) and a vertex
linked to S+ (for the other).

The total number of vertices is equal to

N(D) = 4× [(d− 1)(d− 2) + 1]− 6 + 12 = 90.

Perhaps one should observe that 90 = 6× 15, where 15 is the number of vertices of the
hyperelliptic diagram for d = 5.

11. THE DIAGRAM [7, 3](3)(1)

11.1. Alphabet, Automorphisms, Involution. We take as alphabet A = {±∞,±1 ±
2, 0}. There is no nontrivial automorphism. The involution exchanges ±∞, ±1, ±2 and
fixes 0.

11.2. Standard vertices. There are 16 standard vertices. Two of them are fixed by the
involution

S :=

(
−∞ 2 0 −2 1 −1 +∞
+∞ −2 0 2 −1 1 −∞

)
,

T :=

(
−∞ −2 −1 1 0 2 +∞
+∞ 2 1 −1 0 −2 −∞

)
.

Otherwise, we have 7 pairs of symmetric vertices

A+ :=

(
−∞ 1 0 −2 −1 2 +∞
+∞ 0 2 1 −1 −2 −∞

)
,

A− :=

(
−∞ 0 −2 −1 1 2 +∞
+∞ −1 0 2 1 −2 −∞

)
,

B+ :=

(
−∞ 0 −2 1 −1 2 +∞
+∞ −1 −2 0 2 1 −∞

)
,

B− :=

(
−∞ 1 2 0 −2 −1 +∞
+∞ 0 2 −1 1 −2 −∞

)
,

C+ :=

(
−∞ −2 1 −1 2 0 +∞
+∞ 2 −1 −2 0 1 −∞

)
,

C− :=

(
−∞ −2 1 2 0 −1 +∞
+∞ 2 −1 1 −2 0 −∞

)
,
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D+ :=

(
−∞ 1 −2 −1 2 0 +∞
+∞ 0 1 2 −1 −2 −∞

)
,

D− :=

(
−∞ 0 −1 −2 1 2 +∞
+∞ −1 2 1 −2 0 −∞

)
,

E+ :=

(
−∞ −2 −1 1 2 0 +∞
+∞ 2 −1 0 1 −2 −∞

)
,

E− :=

(
−∞ −2 1 0 −1 2 +∞
+∞ 2 1 −1 −2 0 −∞

)
,

F+ :=

(
−∞ 1 −1 2 0 −2 +∞
+∞ 0 2 −1 −2 1 −∞

)
,

F− :=

(
−∞ 0 −2 1 2 −1 +∞
+∞ −1 1 −2 0 2 −∞

)
,

G+ :=

(
−∞ −2 −1 2 1 0 +∞
+∞ 2 0 1 −1 −2 −∞

)
,

G− :=

(
−∞ −2 0 −1 1 2 +∞
+∞ 2 1 −2 −1 0 −∞

)
.

11.3. The diagram Γ(D). The vertex S has default 6, with edges toC+, C−, B+, B−, F+, F−.
The vertex T has default 2, with edges to A+, A−.
The vertex A+ has default 5, with edges to G+, A−, B+, E−, T .
The vertex B+ has default 5, with edges to S,A+, F+, E−, C+.
The vertex C+ has default 4, with edges to D+, S,B+, F+.
The vertex D+ has default 3, with edges to C+, G+, E+.
The vertex E+ has default 3, with edges to A−, B−, D+.
The vertex F+ has default 3, with edges to S,B+, C+.
The vertex G+ has default 2, with edges to A+, D+.
The default of the diagram is δ(D) = 29.
The model for a monotonous chain of length 7 connects G+ and G−. In Γ(D), the

shortest way is to use the edges from G+ to A+, A+ to A−, A− to G−.

11.4. Vertices of height 6 4. There are 16 pure cycles of each type, height 1, each with
5 vertices of height 2. This gives altogether 160 vertices of height 2. Attached to these
vertices are 160 pure cycles of height 3. Actually, for each 1 6 ` 6 5, there are 16 cycles
of each type, height 3 and length `. Such a cycle contains `− 1 vertices of height 4.

There are 160 = 16×10 vertices withHt(π) = H(π) = 4, and similarly 160 = 16×10
vertices with Hb(π) = H(π) = 4. In view of the default of Γ(D), this gives 58 vertices
with Ht(π) = Hb(π) = 4, 102 vertices with Ht(π) = 4, Hb(π) = 6, and 102 vertices
with Ht(π) = 6, Hb(π) = 4.

Let V be a vertex with Ht(V ) = 6, Hb(V ) = 4. Let (V0, C1, V2, C3, V4 = V ) be
the chain connecting V to a standard vertex V0. Let αt, αb be the winners of the top and
bottom cycles through V . In V0, we have

πt(αb) < πt(αt), πb(αt) < πb(αb).

Moreover, the length of the cycle C5 of top type through V is equal to πb(αb)−πb(αt).
The vertices V ′ 6= V in C5 with Ht(V ) = 6, Hb(V ) = 4 (i.e H(V ′) = 4 as Ht(V

′) = 6
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is automatic) correspond to the letters α′b such that πb(αt) < πb(α
′
b) < πb(αb) and α′b /∈

[αb ↗ αt]t.
We consider the pure cycles of height 5 linked to the different standard vertices
• There are 4 cycles of each type linked to S; 3 have length 1 and one has length 2,

associated to (αt, αb) = (2,−2).
• There are 8 cycles of each type linked to T ; 3 (of each type) have length 1, 2 have

length 2, 2 have length 3 and one has length 4.
• There are 5 cycles of each type linked to A+. Amongst these, 5 have length 1, 3

have length 2 (2 top, 1 bottom), 1 (top) has length 3 and 1 (bottom) has length 4.
• There are 5 cycles of each type linked to B+. Amongst these, 5 have length 1, 3

have length 2 (1 top, 2 bottom), 1 (bottom) has length 3 and 1 (top) has length 4.
• There are 6 cycles of each type linked to C+. Amongst these, 5 have length 1, 3

have length 2 (1 top, 2 bottom), 3 (1 top, 2 bottom) has length 3 and 1 (top) has
length 4.

• There are 7 cycles of each type linked to D+. Amongst these, 6 have length 1, 4
have length 2 (2 top, 2 bottom), 2 (1 top, 1 bottom) has length 3 and 2 (1 top, 1
bottom) has length 4.

• There are 7 cycles of each type linked to E+. Amongst these, 5 have length 1, 4
have length 2 (1 top, 3 bottom), 3 (2 top, 1 bottom) has length 3 and 2 (1 top, 1
bottom) has length 4.

• There are 7 cycles of each type linked to F+. Amongst these, 6 have length 1, 4
have length 2 (2 top, 2 bottom), 2 (1 top, 1 bottom) has length 3 and 2 (1 top, 1
bottom) has length 4.

• There are 8 cycles of each type linked to G+. Amongst these, 6 have length 1, 4
have length 2 (2 top, 2 bottom), 4 (2 top, 2 bottom) has length 3 and 2 (1 top, 1
bottom) has length 4.

Summarizing, there are 44 cycles of top type, height 5 and length 1. For length > 1
we need to know how many times each cycle is counted, i.e how many vertices of height 4
these cycles contain.

11.5. Cycles of height 5 and vertices of height 6. There are 22 pure cycles of top type,
height 5 and length 2. Among these, 16 contain a vertex of height 4 and a vertex of height
6, and 6 contain two vertices of height 4. These 6 cycles are the midcycles of monotonous
chains of length 5 connecting T to E−, A+ to D+, B− to A+, C− to E−, E− to G− and
F+ to B−.

There are 10 pure cycles of top type, height 5 and length 3. Two of these cycles have
only vertices of height 4. The first one connects T,E+, G+, the second one C+, C−, E+.
Four of these cycles have one vertex of height 6 and two of height 4 (connecting (T,G−),
(A+, F+), (B−, D+), (C−, G−) respectively. Finally four of these cycles have two ver-
tices of height 6 and one of height 4 (connected to D−, E−, F−, G+ respectively).

There are 5 pure cycles of top type, height 5 and length 4. One of these cycles have one
vertex of height 4 (connected to T ) and three of height 6. Two of these cycles have two ver-
tices of height 4 (connected to (D+, F+), (E+, G−) respectively) and two of height 6. One
of these cycles have three vertices of height 4 (connected to C+, G+, E−) and one vertex
of height 6. The last cycle has four vertices of height 4, connected to A−, D−, F−, B+.

We conclude that altogether there are 36 = 16+12+8 vertices withHt(V ) = H(V ) =
6. Some of these vertices will have Hb(V ) = 6, the others will have Hb(V ) = 8.
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For these vertices V with Ht(V ) = H(V ) = 6, denote by C the pure cycle of bottom
type through V . For 21 of these vertices, C has length 1 (hence height 7). For 7 of
these vertices , C has height 5: these cases correspond to monotonous chains of length 6
connecting T to B−, B+ to T , F− to F+, C− to F+, F− to C+, F− to E+, E− to F+.
For the last 8 vertices, C has length > 1 and height 7. More precisely

• There is a monotonous chain of length 7 between T and E+;
• There is a monotonous chain of length 7 between G+ and G−;
• In two cases (connected to D+, D−, C has height 7, length 2. The other vertex

in C has height 8, and the top cycle through this other vertex has length 1 (hence
height 9);

• The last case is a monotonous chain of length 7 from T to G+ with a decoration:
C has length 3, there is an additional vertex of height 8 such that the top cycle
through it has length 1 (hence height 9).

We have only described the cases where C is of bottom type. The other cases are
obtained from the involution.

There are 7 vertices with Ht(V ) = Hb(V ) = 6, 29 with Ht(V ) = 6, Hb(V ) = 8,
29 with Ht(V ) = 8, Hb(V ) = 6. There are 5 pure cycles of each type of height 7 and
length > 1, 4 of length 2 and one of length 3. Finally, there are 3 vertices with Ht(V ) =
8, Hb(V ) = 10, and 3 with Ht(V ) = 10, Hb(V ) = 8.

Summarizing, there are
• 16 vertices of height 0;
• 160 vertices of height 2;
• 262 vertices of height 4;
• 65 vertices of height 6;
• 6 vertices of height 8;

Apparently, the diagram has 509 vertices.

12. THE DIAGRAMS [4 +N, 2](2)(0N )

We have already seen the cases N = 0, 1, 2 from which we infer the general case.

12.1. Alphabet, automorphism group and involution. The alphabet is A = A4 t A∗,
where A∗ is an alphabet on N letters. The automorphism group is the group of permu-
tations of A∗. The involution exchanges 3 and −3, 1 and −1, and fixes every letter in
A∗.

12.2. Standard vertices. Standard vertices are in one-to-one correspondence with triples
(a, b, c) where

• a (resp.b, resp. c) is a bijection from {1, . . . , |a|} (resp. {1, . . . , |b|}, resp. {1, . . . , |c|})
onto a subset A (resp. B, resp. C) of A∗;

• the subsets A,B,C form a partition of A∗.
The subsets A,B,C are allowed to be empty (this corresponds to |a| = 0, . . . ).
The standard vertex associated to (a, b, c) is

S(a, b, c) :=

(
−3 a −1 b 1 c 3

3 a 1 c −1 b −3

)
.

Here, a in the top or bottom line means (a(1), . . . , a(|a|)).
The number of standard vertices is equal to
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Nst(D) =
1

2
(N + 2)! .

12.3. Default of standard vertices. For S(a, b, c) as above, let us compute the number of
pairs of distinct letters in A which are ordered in the same way by πt and πb. Notice that at
least one of these letters must belong to A∗. If (α, β) is such a pair, we have the following
possibilities

(1) Both α, β belong to a;
(2) Both α, β belong to b ∪ {−1};
(3) Both α, β belong to c ∪ {1};
(4) α belongs to a, and β belongs to b ∪ {−1};
(5) α belongs to a, and β belongs to c ∪ {1};

The default of S(a, b, c) is thus equal to

δ(S(a, b, c)) = N(|a|+ 1) +
|b|(|b| − 1)

2
+
|c|(|c| − 1)

2
− |a|(|a| − 1)

2

=
N(N + 1)

2
− |b||c|+ |a|.

The minimum value is b (N+1)2

4 c (when |a| = 0 and ||b| − |c|| 6 1). The maximum
value is N(N+3)

2 (when |a| = N ).
Of the (N+2)(N+1) vertices linked to any standard vertex, only 2 are inessential, one

on each side of the standard vertex. On the top side of the standard vertex, the inessential
linked vertex has αb = −1.

12.4. Edges of Γ(D). To each pair (α, β) as in the last subsection corresponds an edge of
Γ(D) from S(a, b, c) to another standard vertex S(a′, b′, c′).

(1) α, β ∈ a: We write a = a0a1a2, with a0, a1 non empty. We have

a′ = a1a0a2, b′ = b, c′ = c.

(2) α, β ∈ b ∪ {−1}: We write b = b0b1b2, with b1 non empty. We have

a′ = b1a, b′ = b0b2, c′ = c.

The case where b0 is empty corresponds to α = −1.
(3) α, β ∈ c ∪ {1}: We write c = c0c1c2, with c1 non empty. We have

a′ = c1a, b′ = b, c′ = c0c2.

The case where c0 is empty corresponds to α = 1.
(4) α ∈ a, β ∈ b ∪ {−1}: We write a = a0a1, b = b0b1 with a0 non empty. We have

a′ = a1, b′ = b0a0b1, c′ = c.

(5) α ∈ a, β ∈ c ∪ {1}: We write a = a0a1, c = c0c1 with a0 non empty. We have

a′ = a1, b′ = b, c′ = c0a0c1.

Notice that the edge (1) leaves |a|, b, c unchanged. The edge (2) (resp. (3)) lengthens
a and shortens b (resp. c); it is the opposite of (4) (resp. (5)).
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12.5. Open linked vertices. Let S(a, b, c) as above. To get the unconstrained vertices
which are linked to it, take β ∈ b ∪ {−1}, κ ∈ c ∪ {1} and write b = b0b1, c = c0c1. The
two vertices corresponding to (β, κ) are(

−3 a −1 b0 c1 3 b1 1 c0
3 b1 −3 a 1 c0 c1 −1 b0

)
,

(
−3 c1 3 a −1 b0 b1 1 c0

3 a 1 c0 b1 −3 c1 −1 b0

)
.

Observe that b0, b1, c0, c1 may be empty! The first vertex is inessential iff b0 and c1 are
empty. The second vertex is inessential iff c0 and b1 are empty.

The first vertex belongs to a deep cycle of top type of length 1 + |b0| + |c1|. All other
vertices in this cycle are also linked to some standard vertex, hence there is no free vertex!
These other vertices are associated to decompositions b0 = b

(1)
0 b

(2)
0 with b(2)0 non empty

or to decompositions c1 = c
(1)
1 c

(2)
1 with c(1)1 non empty.

The vertex associated to b0 = b
(1)
0 b

(2)
0 is linked to S(a′, b′, c′) with

a′ = a, b′ = b
(1)
0 b1, c′ = c0b

(2)
0 c1.

The vertex associated to c1 = c
(1)
1 c

(2)
1 is linked to S(a′, b′, c′) with

a′ = a, b′ = b0c
(1)
1 b1, c′ = c0c

(2)
1 .

Observe that these cycles keep a fixed.

12.6. The total number of vertices. One first compute the default of the diagram. One
obtains, after a small computation24

δ(D) =
1

2

∑
δ(S) = N !

N(N + 1)(N + 2)(5N + 11)

48
.

The final result is

N(D) = Nst(D)(N2 + 5N + 7)− 2δ(D) =
7

24
(N + 4)!

13. THE DIAGRAMS [4 +N, 2](0)(2, 0N−1)

13.1. Alphabet, Automorphisms, Involution. The alphabet is A = {−1, 1, a, b, c}tA∗,
where A∗ has N − 1 letters. The automorphism group is the product of the symmetric
group of A∗ and a cyclic group of order 3 which permutes cyclically a, b, c. There are
three involutions Ia, Ib, Ic. The involution Ia fixes a and every letter in A∗, exchanges −1
and 1, and also b and c. Similarly for Ib, Ic. The letters a, b, c are associated to the three
pairs of vertical separatrices of the double zero25, the letters in A∗ to theN−1 nonsingular
marked points which are not the root of the RV algorithm.

24See Section 16.5 for some formulas that are used there and in the next sections.
25The relation between the letters and the separatrices (horizontal, or vertical) can be found in the paper of C.

Boissy mentionned in footnote 7.
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13.2. Standard vertices. The standard vertices are parametrized by a letter x ∈ {a, b, c}
and a 4-tuple w = (w0, wa, wb, wc) where wi, for i ∈ {0, a, b, c}, is a bijection of
{1, . . . , |wi|} onto a subset Ai of A∗, and the Ai form a partition of A∗. We have

Sc(w) :=

(
−1 w0 a wa b wb c wc 1

1 w0 b wb a wa c wc −1

)
.

The number of standard vertices is equal to

Nst(D) =
1

2
(N + 2)!.

13.3. Edges of Γ(D). The pairs of letters (α, β) which are ordered in Sc(w) in the same
way by πt and πb are divided in several types. We denote by x ∈ {a, b, c} and w′ =
(w′0, w

′
a, w

′
b, w
′
c) the symbols such that Sc(w) is connected via the (α, β) edge to Sx(w′).

(1) α, β ∈ w0: this gives, with w0 = w
(1)
0 w

(2)
0 w

(3)
0

x = c, w′0 = w
(2)
0 w

(1)
0 w

(3)
0 , w′a = wa, w′b = wb, w′c = wc.

(2) α, β ∈ {a} ∪ wa: this gives, with wa = w
(1)
a w

(2)
a w

(3)
a

x = c, w′0 = w(2)
a w0, w′a = w(1)

a w(3)
a , w′b = wb, w′c = wc.

(3) α, β ∈ {b} ∪ wb: this gives, with wb = w
(1)
b w

(2)
b w

(3)
b

x = c, w′0 = w
(2)
b w0, w′a = wa, w′b = w

(1)
b w

(3)
b , w′c = wc.

(4) α, β ∈ {c} ∪ wc: this gives, with wc = w
(1)
c w

(2)
c w

(3)
c

x = c, w′0 = wc(2)w0, w′a = wa, w′b = wb, w′c = w(1)
c w(3)

c .

(5) α ∈ w0, β ∈ {a} ∪ wa: we write w0 = w
(1)
0 w

(2)
0 and wa = w

(1)
a w

(2)
a to obtain

x = c, w′0 = w
(2)
0 , w′a = w(1)

a w
(1)
0 w(2)

a , w′b = wb, w′c = wc.

(6) α ∈ w0, β ∈ {b} ∪ wb: we write w0 = w
(1)
0 w

(2)
0 and wb = w

(1)
b w

(2)
b to obtain

x = c, w′0 = w
(2)
0 , w′a = wa, w′b = w

(1)
b w

(1)
0 w

(2)
b , w′c = wc.

(7) α ∈ w0, β ∈ {c} ∪ wc: we write w0 = w
(1)
0 w

(2)
0 and wc = w

(1)
c w

(2)
c to obtain

x = c, w′0 = w
(2)
0 , w′a = wa, w′b = wb, w′c = w(1)

c w
(1)
0 w(2)

c .

(8) α ∈ {a} ∪ wa, β ∈ {c} ∪ wc: we write wa = w
(1)
a w

(2)
a and wc = w

(1)
c w

(2)
c to

obtain

x = a, w′0 = w(2)
a , w′b = wb, w′c = w(1)

c w0, w′a = w(1)
a w(2)

c .

(9) α ∈ {b} ∪ wb, β ∈ {c} ∪ wc: we write wb = w
(1)
b w

(2)
b and wc = w

(1)
c w

(2)
c to

obtain

x = b, w′0 = w
(2)
b , w′c = w(1)

c w0, w′a = wa, w′b = w
(1)
b w(2)

c .

A small computation gives the default of the vertex Sc(w).

δ(Sc(w)) =
N(N + 1)

2
− |wa||wb|+ |w0|+ |wc|+ 1.

The default is minimal when w0, wc are empty and ||wa| − |wb|| 6 1, maximal when
wa, wb are empty.
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It is easy to see that Γ(D) is connected and thus that the standard vertices are as claimed.
Indeed take as base point a vertex of Γ(D) such that x = c and wa, wb, wc are empty.
Starting with any other vertex, an edge of type (8) or (9) (if necessary) leads to a vertex
with x = c. Then edges of type (2), (3), (4) allow to eliminate wa, wb, wc. Finally, a
succession of edges of type (1) connect to the base point.

13.4. Default of the diagram. A small computation gives

δ(D) = 3(N − 1)!
∑

n0+na+nb+nc=N−1
[
N(N + 1)

2
+ 1 + n0 + nc − nanb]

= (N + 2)!
9N2 + 23N + 8

80
.

13.5. Open linked vertices. Each pair (α, β) with α ∈ {a} ∪ wa, β ∈ {b}wb gives rise
to a pair of unconstrained linked vertices. Writing wa = w

(1)
a w

(2)
a , wb = w

(1)
b w

(2)
b , these

vertices are(
−1 w0 a w

(1)
a w

(2)
b c wc 1 w

(2)
a b w

(1)
b

1 w
(2)
a c wc −1 w0 b w

(1)
b w

(2)
b a w

(1)
a

)
,

(
−1 w

(2)
b c wc 1 w0 a w

(1)
a w

(2)
a b w

(1)
b

1 w0 b w
(1)
b w

(2)
a c wc −1 w

(2)
b a w

(1)
a

)
.

The first (second) vertex is part of a deep cycle of top (bottom) type of length |w(2)
b | +

|w(1)
a | + 1 (resp. |w(2)

a | + |w(1)
b | + 1). Therefore this vertex is inessential iff |w(2)

b | =

|w(1)
a | = 0 (resp. |w(2)

a | = |w(1)
b | = 0).

All vertices in these deep cycles are linked to some standard vertex, hence there are no
free vertices.

13.6. Number of vertices. As there are no free vertices the total number of vertices is
given by

N(D) =
1

2
(N + 2)!(N2 + 5N + 7)− 2δ(D)

=
11

40
(N + 4)!

14. THE DIAGRAMS [5 +N, 2](1)(1, 0N )

14.1. Alphabet, Automorphisms, Involution. The alphabet is A = {−2,−1, 0, 1, 2} t
A∗, with |A∗| = N .

The involution fixes each letter in A∗ and 0, and exchanges ±1, ±2.

The automorphism group is the symmetric group of A∗.
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14.2. Standard vertices. For each w = (w−, w−1, w0, w1), we have the vertex

S(w) :=

(
−2 w− −1 w−1 0 w0 1 w1 2

2 w− 1 w1 0 w0 −1 w−1 −2

)
.

The number of standard vertices is equal to

Nst(D) =
1

6
(N + 3)!.

14.3. Edges of Γ(D). The pairs of letters (α, β) which are ordered in S(w) in the same
way by πt and πb are divided in several types. We denote by w′ = (w′0, w

′
a, w

′
b, w
′
c) the

symbols such that S(w) is connected via the (α, β) edge to S(w′).

(1) α, β ∈ w−: We write w− = w
(1)
− w

(2)
− w

(3)
− and we have

w′− = w
(2)
− w

(1)
− w

(3)
− , w′−1 = w−1, w′0 = w0, w′1 = w1.

(2) α, β ∈ {−1} ∪ w−1: We write w−1 = w
(1)
−1w

(2)
−1w

(3)
−1 and we have

w′− = w
(2)
−1w−, w′−1 = w

(1)
−1w

(3)
−1, w′0 = w0, w′1 = w1.

(3) α, β ∈ {0} ∪ w0: We write w0 = w
(1)
0 w

(2)
0 w

(3)
0 and we have

w′− = w
(2)
0 w−, w′−1 = w−1, w′0 = w

(1)
0 w

(3)
0 , w′1 = w1.

(4) α, β ∈ {1} ∪ w1: We write w1 = w
(1)
1 w

(2)
1 w

(3)
1 and we have

w′− = w
(2)
1 w−, w′−1 = w−1, w′0 = w0, w′1 = w

(1)
1 w

(3)
1 .

(5) α ∈ w−, β ∈ {−1} ∪ w−1: We write w− = w
(1)
− w

(2)
− , w−1 = w

(1)
−1w

(2)
−1 and we

have

w′− = w
(2)
− , w′−1 = w

(1)
−1w

(1)
− w

(2)
−1, w′0 = w0, w′1 = w1.

(6) α ∈ w−, β ∈ {0} ∪ w0: We write w− = w
(1)
− w

(2)
− , w0 = w

(1)
0 w

(2)
0 and we have

w′− = w
(2)
− , w′−1 = w−1, w′0 = w

(1)
0 w

(1)
− w

(2)
0 , w′1 = w1.

(7) α ∈ w−, β ∈ {1} ∪ w1: We write w− = w
(1)
− w

(2)
− , w1 = w

(1)
1 w

(2)
1 and we have

w′− = w
(2)
− , w′−1 = w−1, w′0 = w0, w′1 = w

(1)
1 w

(1)
− w

(2)
1 .

A small computation gives the default of the vertex S(w).

δ(S(w)) =
N(N + 1)

2
+ 2|w−| − (|w−1||w0|+ |w0||w1|+ |w1||w−1|).

The default is minimal, equal to b (N+1)(N+2)
6 c, when w− is empty and

||w−1| − |w0|| 6 1, ||w0| − |w1|| 6 1, ||w1| − |w−1|| 6 1.

The default is maximal, equal to N(N+5)
2 , when w−1, w0, w1 are empty.

The proof that Γ(D) is connected, using the first four types of edges, is as in the last
section. This implies that the list of standard vertices is as stated.
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14.4. Default of the diagram. A small computation gives

δ(D) =
1

2
N !

∑
n−+n−1+n0+n1=N

[
N(N + 1)

2
+ 2n− − 3n0n1]

= (N + 3)!
N(7N + 23)

240
.

14.5. Open linked vertices. Unconstrained linked vertices are obtained from three types
of pairs (α, β) of letters of A.

(1) α ∈ {−1} ∪ w−1, β ∈ {0} ∪ w0: Write w−1 = w
(1)
−1w

(2)
−1 , w0 = w

(1)
0 w

(2)
0 . The

two vertices obtained from (α, β) are(
−2 w− −1 w

(1)
−1 w

(2)
0 1 w1 2 w

(2)
−1 0 w

(1)
0

2 w
(2)
−1 −2 w− 1 w1 0 w

(1)
0 w

(2)
0 −1 w

(1)
−1

)
,

(
−2 w

(2)
0 1 w1 2 w− −1 w

(1)
−1 w

(2)
−1 0 w

(1)
0

2 w− 1 w1 0 w
(1)
0 w

(2)
−1 −2 w

(2)
0 −1 w

(1)
−1

)
.

There is a deep cycle of top type through the first vertex but all the vertices in
this cycle are linked to some standard vertex.

Similarly, there is a deep cycle of bottom type through the second vertex but all
the vertices in this cycle are linked to some standard vertex.

(2) α ∈ {1} ∪ w1, β ∈ {0} ∪ w0: this case is similar to the first one.
(3) α ∈ {−1} ∪ w−1, β ∈ {1} ∪ w1: Write w−1 = w

(1)
−1w

(2)
−1 , w1 = w

(1)
1 w

(2)
1 . The

two vertices obtained from (α, β) are

At :=

(
−2 w− −1 w

(1)
−1 w

(2)
1 2 w

(2)
−1 0 w0 1 w

(1)
1

2 w
(2)
−1 −2 w− 1 w

(1)
1 w

(2)
1 0 w0 −1 w

(1)
−1

)
,

Ab :=

(
−2 w

(2)
1 2 w− −1 w

(1)
−1 w

(2)
−1 0 w0 1 w

(1)
1

2 w− 1 w
(1)
1 w

(2)
−1 −2 w

(2)
1 0 w0 −1 w

(1)
−1

)
.

Consider the deep cycle Ct of top type through At. The losers of the arrows in
this cycle are the letters in w(2)

1 0 w0 − 1 w
(1)
−1 . The vertices corresponding to

letters in w(2)
1 or −1w

(1)
−1 are linked to some standard vertex. on the other hand,

letters in {0}∪w0 give rise to free vertices. Writing w0 = w
(1)
0 w

(2)
0 , these vertices

are

Ft :=

(
−2 w− −1 w

(1)
−1 w

(2)
1 2 w

(2)
−1 0 w

(1)
0 w

(2)
0 1 w

(1)
1

2 w
(2)
−1 −2 w− 1 w

(1)
1 w

(2)
0 −1 w

(1)
−1 w

(2)
1 0 w

(1)
0

)
.

Similarly, the deep cycle Cb of bottom type through Ab contains free vertices
of the form

Fb :=

(
−2 w

(2)
1 2 w− −1 w

(1)
−1 w

(2)
0 1 w

(1)
1 w

(2)
−1 0 w

(1)
0

2 w− 1 w
(1)
1 w

(2)
−1 −2 w

(2)
1 0 w

(1)
0 w

(2)
0 −1 w

(1)
−1

)
.
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14.6. Free vertices. I claim that there are no other free vertices than those obtained in
the last subsection. Consider the deep bottom cycle Ξb through Ft. This cycle is actually
ultradeep in the sense that none of its vertices is linked to a standard vertex. On the other
hand, given any vertex in Ξb, the top cycle through it contains vertices which are linked to
some standard vertex (it is sufficient to have αb = −1). This proves the claim.

What we have just proved is that there are two types of deep cycles: cycles of depth 1
which contain at least one vertex linked to a standard vertex and cycles of depth 2 which do
not contain such a vertex. All free vertices belong to two deep cycles, one of depth 1 and
one of depth 2. This allow to separate the free vertices into top and bottom type, according
to the type of the deep cycle of depth 1 through them. The two types are exchanged by the
involution.

To count the free vertices of top type, observe that Ft is uniquely determined by the 6

words w−, w
(1)
0 , w

(2)
0 , w

(1)
1 , w

(2)
−1, w

(1)
−1w

(2)
1 . The fact that this does not allow to determine

w1, w−1 reflects the fact that the deep cycle Ct through Ft contains vertices linked to
standard vertices 6= S(w). As the sum of the lengths of these six words is equal to N , the
number of free vertices of top type is

N !
∑

n1+...n6=N

1 =
1

120
(N + 5)! .

14.7. Number of vertices. From the previous computations, one gets

N(D) = (N2 + 7N + 13)Nst(D)− 2δ(D) +
1

60
(N + 5)! =

1

8
(N + 5)!.

15. THE DIAGRAMS [5 +N, 2](0)(12, 0N−1)

15.1. Alphabet, Automorphisms, Involution. The alphabet is

A := {−1, 1} t {a, b, c, d} tA∗,

where A∗ has (N − 1) letters.
The automorphism group is the product of the cyclic group of order 4, permuting cycli-

cally a, b, c, d, and the permutation group of A∗.
There are two involutions. The involution I0 exchanges−1 and 1, a and c and fixes b,d.

The involution I1 exchanges −1 and 1, b and d and fixes a,c.

15.2. Standard vertices. They are parametrized by a letter x ∈ {a, b, c, d} and a symbol
w = (w−, wa, wb, wc, wd).

Sa(w) :=

(
−1 w− b wb c wc d wd a wa 1

1 w− d wd c wc b wb a wa −1

)
.

The number of standard vertices is

Nst(D) =
1

6
(N + 3)!.
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15.3. Edges of Γ(D). The edges from a standard vertex (here, Sa(w)) are associated to
pair (α, β) of letters ordered in the same way by πt and πb.

(1) α, β ∈ w−: Write w− = w
(1)
− w

(2)
− w

(3)
− . We have

x = a, w′− = w
(2)
− w

(1)
− w

(3)
− , w′b = wb, w′c = wc, w′d = wd, w′a = wa.

(2) α, β ∈ {b} ∪ wb: Write wb = w
(1)
b w

(2)
b w

(3)
b . We have

x = a, w′− = w
(2)
b w−, w′b = w

(1)
b w

(3)
b , w′c = wc, w′d = wd, w′a = wa.

(3) α, β ∈ {c} ∪ wc: Write wc = w
(1)
c w

(2)
c w

(3)
c . We have

x = a, w′− = w(2)
c w−, w′b = wb, w′c = w(1)

c w(3)
c , w′d = wd, w′a = wa.

(4) α, β ∈ {d} ∪ wd: Write wd = w
(1)
d w

(2)
d w

(3)
d . We have

x = a, w′− = w
(2)
d w−, w′b = wb, w′c = wc, w′d = w

(1)
d w

(3)
d , w′a = wa.

(5) α, β ∈ {a} ∪ wa: Write wa = w
(1)
a w

(2)
a w

(3)
a . We have

x = a, w′− = w(2)
a w−, w′b = wb, w′c = wc, w′d = wd, w′a = w(1)

a w(3)
a .

(6) α ∈ w−, β ∈ {b} ∪ wb:Write w− = w
(1)
− w

(2)
− , wb = w

(1)
b w

(2)
b . We have

x = a, w′− = w
(2)
− , w′b = w

(1)
b w

(1)
− w

(2)
b , w′c = wc, w′d = wd, w′a = wa.

(7) α ∈ w−, β ∈ {c} ∪ wc: Write w− = w
(1)
− w

(2)
− , wc = w

(1)
c w

(2)
c . We have

x = a, w′− = w
(2)
− , w′b = wb, w′c = w(1)

c w
(1)
− w(2)

c , w′d = wd, w′a = wa.

(8) α ∈ w−, β ∈ {d} ∪ wd: Write w− = w
(1)
− w

(2)
− , wd = w

(1)
d w

(2)
d . We have

x = a, w′− = w
(2)
− , w′b = wb, w′c = wc, w′d = w

(1)
d w

(1)
− w

(2)
d , w′a = wa.

(9) α ∈ w−, β ∈ {a} ∪ wa: Write w− = w
(1)
− w

(2)
− , wa = w

(1)
a w

(2)
a . We have

x = a, w′− = w
(2)
− , w′b = wb, w′c = wc, w′d = wd, w′a = w(1)

a w
(1)
− w(2)

a .

(10) α ∈ {b} ∪ wb, β ∈ {a} ∪ wa: Write wb = w
(1)
b w

(2)
b , wa = w

(1)
a w

(2)
a . We have

x = b, w′− = w
(2)
b , w′b = w

(1)
b w(2)

a , w′c = wc, w′d = wd, w′a = w(1)
a w−.

(11) α ∈ {c} ∪ wc, β ∈ {a} ∪ wa: Write wc = w
(1)
c w

(2)
c , wa = w

(1)
a w

(2)
a . We have

x = c, w′− = w(2)
c , w′b = wb, w′c = w(1)

c w(2)
a , w′d = wd, w′a = w(1)

a w−.

(12) α ∈ {d} ∪ wd, β ∈ {a} ∪ wa: Write wd = w
(1)
d w

(2)
d , wa = w

(1)
a w

(2)
a . We have

x = d, w′− = w
(2)
d , w′b = wb, w′c = wc, w′d = w

(1)
d w(2)

a , w′a = w(1)
a w−.
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15.4. Default of a vertex. We have δ(Sa(w)) = δ1 + δ2 + δ3, with

δ1 :=
|w−|(|w−| − 1)

2
+

∑
x=a,b,c,d

|wx|(|wx|+ 1)

2
,

δ2 := |w−| (4 +
∑

x=a,b,c,d

|wx|),

δ3 := (1 + |wa|) (3 +
∑

x=b,c,d

|wx|).

One obtains

δ(Sa(w)) =
N(N + 1)

2
+ 2 + 2(|w−|+ |wa|)− (|wb||wc|+ |wc||wd|+ |wd||wb|).

The default is maximal when wb, wc, wd are empty. It is then equal to N(N+5)
2 . The

default is minimal when w−, wa are empty and

||wb| − |wc|| 6 1, ||wc| − |wd|| 6 1, ||wd| − |wb|| 6 1.

It is then equal to b (N+3)(N+4)
6 c.

The proof that Γ(D) is connected is as in the previous sections. This implies that the
list of standard vertices is as stated.

15.5. Default of the diagram. One gets

δ(D) =
1

2

∑
x,w

δ(Sx(w))

= 2
∑
w

δ(Sa(w))

= (N2 +N + 4)
∑
w

1 + 8
∑
w

|w−| − 6
∑
w

|wb||wc|.

Here on has ∑
w

1 =
(N + 3)!

4!
,

∑
w

|w−| = (N − 1)
(N + 3)!

5!
,

∑
w

|wb||wc| = (N − 1)(N − 2)
(N + 3)!

6!
.

One thus obtains

δ(D) = (4N2 + 16N + 10)
(N + 3)!

5!
.
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15.6. Open linked vertices. Unconstrained linked vertices to Sa(w) are obtained from
three types of pairs (α, β) of letters of A.

(1) α ∈ {b} ∪ wb, β ∈ {c} ∪ wc: Write wb = w
(1)
b w

(2)
b , wc = w

(1)
c w

(2)
c . The two

vertices obtained from (α, β) are(
−1 w− b w

(1)
b w

(2)
c d wd a wa 1 w

(2)
b c w

(1)
c

1 w
(2)
b a wa −1 w− d wd c w

(1)
c w

(2)
c b w

(1)
b

)
,

(
−1 w

(2)
c d wd a wa 1 w− b w

(1)
b w

(2)
b c w

(1)
c

1 w− d wd c w
(1)
c w

(2)
b a wa −1 w

(2)
c b w

(1)
b

)
.

There is a deep cycle of top type through the first vertex but all the vertices in
this cycle are linked to some standard vertex.

Similarly, there is a deep cycle of bottom type through the second vertex but all
the vertices in this cycle are linked to some standard vertex.

(2) α ∈ {d} ∪ wd, β ∈ {c} ∪ wc: This case is similar, applying the involution I1.
(3) α ∈ {d} ∪ wd, β ∈ {b} ∪ wb: Write wb = w

(1)
b w

(2)
b , wd = w

(1)
d w

(2)
d . The two

vertices obtained from (α, β) are

At :=

(
−1 w− b w

(1)
b w

(2)
d a wa 1 w

(2)
b c wc d w

(1)
d

1 w
(2)
b a wa −1 w− d w

(1)
d w

(2)
d c wc b w

(1)
b

)
,

Ab :=

(
−1 w

(2)
d a wa 1 w− b w

(1)
b w

(2)
b c wc d w

(1)
d

1 w− d w
(1)
d w

(2)
b a wa −1 w

(2)
d c wc b w

(1)
b

)
.

Consider the deep cycle Ct of top type through At. The losers of the arrows in
this cycle are the letters in w(2)

d c wc b w
(1)
b . The vertices corresponding to letters

in w(2)
d or bw(1)

b are linked to some standard vertex. on the other hand, letters in
{c} ∪ wc give rise to free vertices. Writing wc = w

(1)
c w

(2)
c , these vertices Ft are(

−1 w− b w
(1)
b w

(2)
d a wa 1 w

(2)
b c w

(1)
c w

(2)
c d w

(1)
d

1 w
(2)
b a wa −1 w− d w

(1)
d w

(2)
c b w

(1)
b w

(2)
d c w

(1)
c

)
.

Applying I1, we get also vertices Fb.

15.7. Free vertices. The discussion is similar to the last section.
We prove that there are no other free vertices than those obtained in the last subsection.

Consider the deep bottom cycle Ξb through Ft. This cycle has depth 2. On the other hand,
given any vertex in Ξb, the top cycle through it contains vertices which are linked to some
standard vertex (it is sufficient to have αb = b). This proves the assertion.

All free vertices belong to two deep cycles, one of depth 1 and one of depth 2. This
allow to separate the free vertices into top and bottom type, according to the type of the
deep cycle of depth 1 through them. The two types are exchanged by the involution.

To count the free vertices of top type, observe that Ft is uniquely determined by the 7

words w−, wa, w
(1)
c , w

(2)
c , w

(1)
d , w

(2)
b , w

(1)
b w

(2)
d . The fact that this does not allow to deter-

mine wb, wd reflects the fact that the deep cycle Ct through Ft contains vertices linked to
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standard vertices 6= Sa(w). As the sum of the lengths of these 7 words is equal to N − 1,
the number of free vertices of top type is

4(N − 1)!
∑

n1+...n7=N−1
1 =

1

180
(N + 5)! .

15.8. Number of vertices. From the previous computations, one gets

N(D) = (N2 + 7N + 13)Nst(D)− 2δ(D) +
1

90
(N + 5)! =

1

9
(N + 5)!.

16. THE DIAGRAMS [6 +N, 3](4)(0N )hyp

16.1. Alphabet, automorphisms and involution. The alphabet is A = {±5,±3,±1} t
A∗, where A∗ hasN letters. The involution fixes each letter in A∗, and exchanges±1,±3,±5.
The automorphism group is the permutation group of A∗.

16.2. Standard vertices. They are parametrized by a symbolw = (w−, w−3, w−1, w1, w3).
We will write Wi for i wi, i = −3,−1, 1, 3. This is necessary as the diagrams are getting
more complicated. The standard vertex S(w) is

S(w) :=

(
−5 w− −3 w−3 −1 w−1 1 w1 3 w3 5

5 w− 3 w3 1 w1 −1 w−1 −3 w−3 −5

)
,

that we rewrite as

S(w) =

(
−5 w− W−3 W−1 W1 W3 5

5 w− W3 W1 W−1 W−3 −5

)
.

The number of standard vertices is given by

Nst(D) = N !
∑

n0+...n4=N

1 =
1

24
(N + 4)!.

16.3. Edges of Γ(D). The edges from a standard vertex (here, Sa(w)) are associated to
pair (α, β) of letters ordered in the same way by πt and πb.

(1) α, β ∈ w−: We write w− = w
(1)
− w

(2)
− w

(3)
− and have

w′− = w
(2)
− w

(1)
− w

(3)
− , W ′−3 = W−3, W ′−1 = W−1, W ′1 = W1, W ′3 = W3.

(2) α, β ∈W−3: We write W−3 = W
(1)
−3W

(2)
−3W

(3)
−3 and have

w′− = W
(2)
−3w−, W ′−3 = W

(1)
−3W

(3)
−3 , W ′−1 = W−1, W ′1 = W1, W ′3 = W3.

(3) α, β ∈W−1: We write W−1 = W
(1)
−1W

(2)
−1W

(3)
−1 and have

w′− = W
(2)
−1w−, W ′−3 = W−3, W ′−1 = W

(1)
−1W

(3)
−1 , W ′1 = W1, W ′3 = W3.

(4) α, β ∈W1: We write W1 = W
(1)
1 W

(2)
1 W

(3)
1 and have

w′− = W
(2)
1 w−, W ′−3 = W−3, W ′−1 = W−1, W ′1 = W

(1)
1 W

(3)
1 , W ′3 = W3.
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(5) α, β ∈W3: We write W3 = W
(1)
3 W

(2)
3 W

(3)
3 and have

w′− = W
(2)
3 w−, W ′−3 = W−3, W ′−1 = W−1, W ′1 = W1, W ′3 = W

(2)
3 W

(1)
3 W

(3)
3 .

(6) α ∈ w−, β ∈W−3: We write w− = w
(1)
− w

(2)
− , W−3 = W

(1)
−3W

(2)
−3 and have

w′− = w
(2)
− , W ′−3 = W

(1)
−3w

(1)
− W

(2)
−3 , W ′−1 = W−1, W ′1 = W1, W ′3 = W3.

(7) α ∈ w−, β ∈W−1: We write w− = w
(1)
− w

(2)
− , W−1 = W

(1)
−1W

(2)
−1 and have

w′− = w
(2)
− , W ′−3 = W−3, W ′−1 = W

(1)
−1w

(1)
− W

(2)
−1 , W ′1 = W1, W ′3 = W3.

(8) α ∈ w−, β ∈W1: We write w− = w
(1)
− w

(2)
− , W1 = W

(1)
1 W

(2)
1 and have

w′− = w
(2)
− , W ′−3 = W−3, W ′−1 = W−1, W ′1 = W

(1)
1 w

(1)
− W

(2)
1 , W ′3 = W3.

(9) α ∈ w−, β ∈W3: We write w− = w
(1)
− w

(2)
− , W3 = W

(1)
3 W

(2)
3 and have

w′− = w
(2)
− , W ′−3 = W−3, W ′−1 = W−1, W ′1 = W1, W ′3 = W

(1)
3 w

(1)
− W

(2)
3 .

16.4. Default of a vertex. We have δ(S(w)) = δ1 + δ2 with

δ1 =
|w−|(|w−| − 1)

2
+

∑
x=−3,−1,1,3

|wx|(|wx|+ 1)

2
,

δ2 = |w−| (4 +
∑

x=−3,−1,1,3
|wx|).

One obtains

δ(Sa(w)) =
N(N + 1)

2
+ 3|w−| −

∑
i,j∈{−3,−1,1,3},i<j

|wi||wj |.

The default is maximal when wi is empty for i = −3,−1, 1, 3. It is then equal to
N(N+7)

2 . The default is minimal when w− is empty and

||wi| − |wj || 6 1, ∀i, j ∈ {−3,−1, 1, 3}.

It is then equal to b (N+2)2

8 c.
The proof that Γ(D) is connected is as in the previous sections. This implies that the

list of standard vertices is as stated.

16.5. Formulas frequently used. ∑
n0+...+nk=N

1 =
(N + k)!

k!N !
.

∑
n0+...+nk=N

n0 =
(N + k)!

(k + 1)!(N − 1)!
.

∑
n0+...+nk=N

n0n1 =
(N + k)!

(k + 2)!(N − 2)!
.
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16.6. Default of the diagram.

δ(D) =
1

2

∑
x,w

δ(Sx(w))

=
N(N + 1)

4

∑
w

1 +
3

2

∑
w

|w−| − 3
∑
w

|w1||w−1|.

From the formulas in the last subsection, one has∑
w

1 =
(N + 4)!

4!
,

∑
w

|w−| = N
(N + 4)!

5!
,

∑
w

|w1||w−1| = N(N − 1)
(N + 4)!

6!
.

One thus obtains

δ(D) = N (3N + 13)
(N + 4)!

480
.

16.7. Open linked vertices. Unconstrained linked vertices to Sa(w) are obtained from
six types of pairs (α, β) of letters of A.

(1) α ∈ W−3, β ∈ W−1: Write W−3 = W
(1)
−3W

(2)
−3 , W−1 = W

(1)
−1W

(2)
−1 . The two

vertices obtained from (α, β) are(
−5 w− W

(1)
−3 W

(2)
−1 W1 W3 5 W

(2)
−3 W

(1)
−1

5 W
(2)
−3 −5 w− W3 W1 W

(1)
−1 W

(2)
−1 W

(1)
−3

)
,

(
−5 W

(2)
−1 W1 W3 5 w− W

(1)
−3 W

(2)
−3 W

(1)
−1

5 w− W3 W1 W
(1)
−1 W

(2)
−3 −5 W

(2)
−1 W

(1)
−3

)
.

The deep cycles through these vertices contain only linked vertices.
(2) α ∈ W−1, β ∈ W1: Write W−1 = W

(1)
−1W

(2)
−1 , W1 = W

(1)
1 W

(2)
1 . The two

vertices obtained from (α, β) are(
−5 w− W−3 W

(1)
−1 W

(2)
1 W3 5 W

(2)
−1 W

(1)
1

5 W
(2)
−1 W−3 −5 w− W3 W

(1)
1 W

(2)
1 W

(1)
−1

)
,

(
−5 W

(2)
1 W3 5 w− W−3 W

(1)
−1 W

(2)
−1 W

(1)
1

5 w− W3 W
(1)
1 W

(2)
−1 W−3 −5 W

(2)
1 W

(1)
−1

)
.

The deep cycles through these vertices contain only linked vertices.
(3) α ∈ W1, β ∈ W3: Write W1 = W

(1)
1 W

(2)
1 , W3 = W

(1)
3 W

(2)
3 . The two vertices

obtained from (α, β) are(
−5 w− W−3 W−1 W

(1)
1 W

(2)
3 5 W

(2)
1 W

(1)
3

5 W
(2)
1 W−1 W−3 −5 w− W

(1)
3 W

(2)
3 W

(1)
1

)
,
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(
−5 W

(2)
3 5 w− W−3 W−1 W

(1)
1 W

(2)
1 W

(1)
3

5 w− W
(1)
3 W

(2)
1 W−1 W−3 5 W

(2)
3 W

(1)
1

)
.

The deep cycles through these vertices contain only linked vertices.
(4) α ∈ W−3, β ∈ W1: Write W−3 = W

(1)
−3W

(2)
−3 , W1 = W

(1)
1 W

(2)
1 . The two

vertices obtained from (α, β) are(
−5 w− W

(1)
−3 W

(2)
1 W3 5 W

(2)
−3 W−1 W

(1)
1

5 W
(2)
−3 −5 w− W3 W

(1)
1 W

(2)
1 W−1 W

(1)
−3

)
,

(
−5 W

(2)
1 W3 5 w− W

(1)
−3 W

(2)
−3 W−1 W

(1)
1

5 w− W3 W
(1)
1 W

(2)
−3 −5 W

(2)
1 W−1 W

(1)
−3

)
.

This gives rise to free vertices through the splitting of W−1. See next subsec-
tion.

(5) α ∈ W−1, β ∈ W3: Write W−1 = W
(1)
−1W

(2)
−1 , W3 = W

(1)
3 W

(2)
3 . The two

vertices obtained from (α, β) are(
−5 w− W−3 W

(1)
−1 W

(2)
3 5 W

(2)
−1 W1 W

(1)
3

5 W
(2)
−1 W−3 −5 w− W

(1)
3 W

(2)
3 W1 W

(1)
−1

)
,

(
−5 W

(2)
3 5 w− W−3 W

(1)
−1 W

(2)
−1 W1 W

(1)
3

5 w− W
(1)
3 W

(2)
−1 W−3 −5 W

(2)
3 W1 W

(1)
−1

)
.

This gives rise to free vertices through the splitting ofW1. See next subsection.
(6) α ∈ W−3, β ∈ W3: Write W−3 = W

(1)
−3W

(2)
−3 , W3 = W

(1)
3 W

(2)
3 . The two

vertices obtained from (α, β) are(
−5 w− W

(1)
−3 W

(2)
3 5 W

(2)
−3 W−1 W1 W

(1)
3

5 W
(2)
−3 −5 w− W

(1)
3 W

(2)
3 W1 W−1 W

(1)
−3

)
,

(
−5 W

(2)
3 5 w− W

(1)
−3 W

(2)
−3 W−1 W1 W

(1)
3

5 w− W
(1)
3 W

(2)
−3 5 W

(2)
3 W1 W−1 W

(1)
−3

)
.

This gives rise to free vertices through the splitting of W1 or W−1. See next
subsection.

16.8. Free vertices. In the case (4) of last subsection, the splitting W−1 = W
(1)
−1W

(2)
−1

gives rise to the vertices

Ft :=

(
−5 w− W

(1)
−3 W

(2)
1 W3 5 W

(2)
−3 W

(1)
−1 W

(2)
−1 W

(1)
1

5 W
(2)
−3 −5 w− W3 W

(1)
1 W

(2)
−1 W

(1)
−3 W

(2)
1 W

(1)
−1

)
,

Fb :=

(
−5 W

(2)
1 W3 5 w− W

(1)
−3 W

(2)
−1 W

(1)
1 W

(2)
−3 W

(1)
−1

5 w− W3 W
(1)
1 W

(2)
−3 −5 W

(2)
1 W

(1)
−1 W

(2)
−1 W

(1)
−3

)
.
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The free vertex Ft belongs to a deep cycle Ct of top type, depth 1 and to a deep cycle Ξb
of bottom type depth 2. But all cycles of top type through a vertex of Ξb have depth 1.

The same holds for Fb, exchanging top and bottom.
The free vertices arising from case (5) of last subsection are dealt with symmetrically.
In case (6), the splitting W−1 = W

(1)
−1W

(2)
−1 gives rise to the vertices

Gt :=

(
−5 w− W

(1)
−3 W

(2)
3 5 W

(2)
−3 W

(1)
−1 W

(2)
−1 W1 W

(1)
3

5 W
(2)
−3 −5 w− W

(1)
3 W

(2)
−1 W

(1)
−3 W

(2)
3 W1 W

(1)
−1

)
,

Gb :=

(
−5 W

(2)
3 5 w− W

(1)
−3 W

(2)
−1 W1 W

(1)
3 W

(2)
−3 W

(1)
−1

5 w− W
(1)
3 W

(2)
−3 −5 W

(2)
3 W1 W

(1)
−1 W

(2)
−1 W

(1)
−3

)
.

The splitting W1 = W
(1)
1 W

(2)
1 is symmetric w.r.t. the involution.

From now on, we use the depth as defined in the first section26.

The free vertices Gt, Gb have depth 6. Consider a vertex Hb of the bottom cycle Ξb
through Gt. If the last top letter of Hb belongs to W (2)

−1 or W (1)
3 , the depth of Hb is equal

to 6. If on the other hand the last top letter belongs to W1, we split W1 = W
(1)
1 W

(2)
1 and

have

Hb :=

(
−5 w− W

(1)
−3 W

(2)
3 5 W

(2)
−3 W

(1)
−1 W

(2)
1 W

(1)
3 W

(2)
−1 W

(1)
1

5 W
(2)
−3 −5 w− W

(1)
3 W

(2)
−1 W

(1)
−3 W

(2)
3 W

(1)
1 W

(2)
1 W

(1)
−1

)
.

Now that all Wi have split, I claim that the depth of Hb is 8. One uses the method of the
first section. One obtains actually27 Dt(Hb) = 9 and Db(Hb) = 7. This indicates that the
top cycle Θt through Hb has depth 9, while the bottom cycle Ξb has depth 7. It remains to
see that all vertices of Θt have depth 8, actually Dt = 728. This is clear. With respect to
Hb, the other vertices of Θt differ only by a circular permutation of the letters in the final
words W (2)

1 W
(1)
−1 of the bottom line of Hb, and this does not alter the computation of Dt

and Db.
The same does not happen for Gb: all vertices of the top cycle Ξt through Gb have

length 6, because it is not possible to split W1.
On the other hand, we could have decided to first split W1; we would have obtained G′t

(similar to Gb) and G′b (similar to Gt) giving rise to Ht of depth 8.
Therefore, up to the involution, every free vertex has been obtained in the discussion

above. We recapitulate (with a slightly different, obvious, notation which allows to relate
easily to the hyperelliptic case N = 0)

(1) (
W (−5) W (−3) W (3) W (5) W

(1)
−1 W

(2)
−1 W

(1)
1

W (5) W (−5) W (3) W
(1)
1 W

(2)
−1 W (−3) W

(1)
−1

)
,

26Depth corresponds to height in the first section.
27This notation doesn’t appear anywhere else. Clearly, Dt(Hb) is the depth/height of the top cycle

through Hb.
28The meaning of Dt is unclear.
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(2) (
W (−5) W (3) W (5) W

(1)
−3 W

(2)
−1 W (1) W

(1)
−1

W (5) W (3) W (1) W (−5) W
(1)
−1 W

(2)
−1 W

(1)
−3

)
,

(3) (
W (−5) W (−3) W (−1) W (5) W

(1)
1 W

(2)
1 W

(1)
3

W (5) W (−3) W (−5) W
(1)
3 W

(2)
1 W (−1) W

(1)
1

)
,

(4) (
W (−5) W (5) W (−3) W

(1)
−1 W

(2)
1 W (3) W

(1)
1

W (5) W (3) W (−3) W (−5) W
(1)
1 W

(2)
1 W

(1)
−1

)
,

(5) (
W (−5) W (−3) W (5) W

(1)
−1 W

(2)
−1 W (1) W

(1)
3

W (5) W (−5) W
(1)
3 W

(2)
−1 W (−3) W (1) W

(1)
−1

)
,

(6) (
W (−5) W (5) W

(1)
−3 W

(2)
−1 W (1) W (3) W

(1)
−1

W (5) W (3) W (−5) W (1) W
(1)
−1 W

(2)
−1 W

(1)
−3

)
,

(7) (
W (−5) W (−3) W (5) W (−1) W

(1)
1 W

(2)
1 W

(1)
3

W (5) W (−5) W
(1)
3 W

(2)
1 W (−1) W (−3) W

(1)
1

)
,

(8) (
W (−5) W (5) W

(1)
−3 W

(2)
1 W (3) W (−1) W

(1)
1

W (5) W (3) W (−5) W
(1)
1 W

(2)
1 W (−1) W

(1)
−3

)
,

(9) (
W (−5) W (−3) W (5) W

(1)
−1 W

(2)
1 W (3) W

(1)
1

W (5) W (−5) W (3) W (−3) W
(1)
1 W

(2)
1 W

(1)
−1

)
,

(10) (
W (−5) W (5) W (−3) W (3) W

(1)
−1 W

(2)
−1 W

(1)
1

W (5) W (3) W (−5) W
(1)
1 W

(2)
−1 W (−3) W

(1)
−1

)
.

The first eight categories of free vertices have depth 6 and the last two have depth 8.

In each category, the number of free vertices is

N !
∑

n0+n1+...+n6=N

1 =
(N + 6)!

6!
.
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16.9. The total number of vertices. From the previous computations, one gets

N(D) = (N2 + 9N + 21)Nst(D)− 2δ(D) +
1

72
(N + 6)! =

31

720
(N + 6)!.

The counting can be separated according to the depth.

N0(D) = Nst(D) =
(N + 4)!

4!
,

N2(D) = (2N + 10)Nst(D) =
(N + 4)!(N + 4)

12
,

N4(D) =
(7N2 + 57N + 120)(N + 4)!

240
,

N6(D) =
1

90
(N + 6)!,

N8(D) =
1

360
(N + 6)!.

17. THE DIAGRAMS [6 +N, 3](4)(0N ) odd

17.1. Alphabet, automorphisms, involution. The alphabet is A = A6 t A∗, where A∗

has N letters. The involution fixes each letter in A∗ and is the usual involution on A6. The
automorphism group is the permutation group of A∗.

17.2. Standard vertices. Recall from a previous section the 7 standard vertices in the
case N = 0:

S :=

(
−5 −3 3 −1 1 5

5 3 −3 1 −1 −5

)
,

which is fixed by the involution.
The others 6 come into 3 pairs of symmetric vertices

A+ :=

(
−5 3 −1 1 −3 5

5 1 3 −3 −1 −5

)
, A− :=

(
−5 −1 −3 3 1 5

5 −3 1 −1 3 −5

)
,

B+ :=

(
−5 3 −1 −3 1 5

5 1 −1 3 −3 −5

)
, B− :=

(
−5 −1 1 −3 3 5

5 −3 1 3 −1 −5

)
,

C+ :=

(
−5 3 1 −1 −3 5

5 1 −3 −1 3 −5

)
, C− :=

(
−5 −1 3 1 −3 5

5 −3 −1 1 3 −5

)
.

It is thus reasonable to expect 7 families of standard vertices, each parametrized by a
symbol w = (w−, w−3, w−1, w1, w3). For instance

A+(w) :=

(
−5 w− W3 W−1 W1 W−3 5

5 w− W1 W3 W−3 W−1 −5

)
,

where Wi = i wi for i = ±1,±3.
The number of standard vertices is

Nst(D) = 7
(N + 4)!

4!
.
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17.3. Edges of Γ(D). The edges from a standard vertex are associated to pair (α, β) of
letters ordered in the same way by πt and πb.

The first type of edges correspond to α, β belonging to the same subset (w− or Wi).
The vertices linked by such an edge belong to the same family. The case where α, β ∈ w−
gives edges allowing to rearrange w− while the other four cases allow to transfer the end
of Wi to the beginning of w−. Viewed from the other endpoint, this corresponds to the
cases α ∈ w−, β ∈Wi.

The cases where α ∈ Wi, β ∈ Wj with i 6= j correspond to edges whose endpoints lie
in distinct families. There are 9 such possibilities:

• S and A+ are related through (W−3,W1);
• S and B+ are related through (W−3,W−1);
• A+ and B− are related through (W−3,W3);
• A+ and C− are related through (W3,W−1);
• C+ and C− are related through (W1,W−1);
• the other cases are obtained from the involution.

The proof that the list of standard vertices is correct is as usual.

17.4. Default of a standard vertex. We have to treat each family separately. Because of
the involution there are really 4 cases. However the dependence on the family affects only
the last term in the sum δ1 + δ2 + δ3.

We have

δ1 =
|w−|(|w−| − 1)

2
+

∑
x=−3,−1,1,3

|wx|(|wx|+ 1)

2
,

δ2 = |w−| (4 +
∑

x=−3,−1,1,3
|wx|).

We have seen in the hyperelliptic case that

δ1 + δ2 =
N(N + 1)

2
+ 3|w−| −

∑
i,j∈{−3,−1,1,3},i<j

|wi||wj |.

Regarding δ3, we have

• For a standard vertex in the S family,

δ3 =
∑
i=±3

∑
j=±1

(1 + |wi|)(1 + |wj |).

This gives

δ(S(w)) =
(N + 2)(N + 3)

2
+ 1 + |w−| − (|w3||w−3|+ |w1||w−1|).

• For a standard vertex in the A+ family,

δ3 = (1 + |w3|)(1 + |w−3|) + (1 + |w3|)(1 + |w−1|) + (1 + |w1|)(1 + |w−3|).

This gives
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δ(A+(w)) =
(N + 1)(N + 2)

2
+ 2 + 2|w−|+ |w3|+ |w−3|

− (|w1||w−1|+ |w1||w3|+ |w−3||w−1|).
• For a standard vertex in the B+ family,

δ3 = (1 + |w3|)(1 + |w−3|) + (1 + |w−3|)(1 + |w−1|).
This gives

δ(B+(w)) =
N(N + 1)

2
+ 2 + 3|w−|+ |w3|+ 2|w−3|+ |w−1|

− (|w1||w−1|+ |w1||w3|+ |w−3||w1|+ |w−1||w3|).
• For a standard vertex in the C+ family,

δ3 = (1 + |w1|)(1 + |w−1|) + (1 + |w1|)(1 + |w−3|).
This gives

δ(C+(w)) =
N(N + 1)

2
+ 2 + 3|w−|+ |w−3|+ 2|w1|+ |w−1|

− (|w3||w−3|+ |w1||w3|+ |w−3||w−1|+ |w−1||w3|).

We do not discuss the mimimal values of the default. The maximal values are N(N+7)
2 +

4 for the S family, N(N+7)
2 + 3 for the A families, N(N+7)

2 + 2 for the B or C families.

17.5. Default of the diagram. We first sum the defaults over each family:

1

2

∑
w

δ(S(w)) =
N2 + 5N + 8

4

∑
w

1 +
1

2

∑
w

|w−| −
∑
w

|w1||w−1|

=
13N2 + 83N + 120

2

(N + 4)!

6!
.

∑
w

δ(A+(w)) =
N2 + 3N + 6

2

∑
w

1 + 4
∑
w

|w−| − 3
∑
w

|w1||w−1|

= (2N2 + 12N + 15)
(N + 4)!

5!
.

∑
w

δ(B+(w)) =
∑
w

δ(C+(w))

=
N2 +N + 4

2

∑
w

1 + 7
∑
w

|w−| − 4
∑
w

|w1||w−1|

= (11N2 + 61N + 60)
(N + 4)!

6!
.

The final result is

δ(D) =
27N2 + 157N + 180

4

(N + 4)!

5!
.
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17.6. Open linked vertices. By definition, the two pure cycles through an open linked
vertex have depth 3 and 5. The vertices on the deep cycle of depth 5 have either depth 4
(and are open linked) or depth 6 (and are free).

The vertices which are open linked to a standard vertex π correspond to pairs (α, β) of
letters (distinct from ±5) which are not ordered in the same way by πt, πb (i.e those not
associated to edges of Γ(D).

For S, the two possibilities (α ∈W1, β ∈W−1 and α ∈W3, β ∈W−3) produce linked
open vertices such that the cycles of depth 5 through them contain only vertices of depth
4.

For A±, there are three possibilities but none of them give rise to free vertices.
For B±, C±, there are four possibilities each, but three of them are sterile.
The fertile possibilities are α ∈ W3, β ∈ W−3 for C+ and C−, α ∈ W3, β ∈ W1 for

B+ and α ∈ W−1, β ∈ W−3 for B−. Each allows to split W−1 (for B+ and C+) or W1

(for B− and C−) to produce free vertices.

17.7. Free vertices. It is sufficient to look at the free vertices arising from C+, α ∈
W3, β ∈ W−3 and B+, α ∈ W3, β ∈ W1 because the others are symmetric w.r.t. the
involution.

These free vertices are
• From C+, α ∈W3, β ∈W−3

Ft :=

(
−5 w− W

(1)
3 W

(2)
−3 5 W

(2)
3 W1 W

(1)
−1 W

(2)
−1 W

(1)
−3

5 W
(2)
3 −5 w− W1 W

(1)
−3 W

(2)
−1 W

(1)
3 W

(2)
−3 W

(1)
−1

)
,

Fb :=

(
−5 W

(2)
−3 5 w− W

(1)
3 W

(2)
−1 W

(1)
−3 W

(2)
3 W1 W

(1)
−1

5 w− W1 W
(1)
−3 W

(2)
3 −5 W

(2)
−3 W

(1)
−1 W

(2)
−1 W

(1)
3

)
.

• From B+, α ∈W3, β ∈W1

Gt :=

(
−5 w− W

(1)
3 W

(2)
1 5 W

(2)
3 W

(1)
−1 W

(2)
−1 W−3 W

(1)
1

5 W
(2)
3 W−3 −5 w− W

(1)
1 W

(2)
−1 W

(1)
3 W

(2)
1 W

(1)
−1

)
,

Gb :=

(
−5 W

(2)
1 5 w− W

(1)
3 W

(2)
−1 W−3 W

(1)
1 W

(2)
3 W

(1)
−1

5 w− W
(1)
1 W

(2)
3 W−3 −5 W

(2)
1 W

(1)
−1 W

(2)
−1 W

(1)
3

)
.

Observe that Fb and Gb are of the same type. Observe also that the symmetric of Gt
w.r.t. the involution belong to the same type than Gt. So we have at this stage five types of
free vertices: one containing Ft, one containing the symmetric of Ft w.r.t. the involution,
one containing Fb and Gb, the symmetric family, and a last one containing Gt which is
autosymmetric. We represent these families by their only element when N = 0.

We now check that there are no other free vertices by computing the depth of the pure
cycles through Ft, Fb, Gt, Gb. For each of these vertices, one of the cycles has depth 5 and
is the one that we have used to access these vertices.

All vertices of the bottom cycle through Ft are free vertices of the same family. This
cycle has depth 7.

Similarly, all vertices of the top cycle through Fb (or Gb) are free vertices of the same
family. This cycle has depth 7.
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The same holds for the symmetric families.

Finally, the bottom cycle throughGt contains vertices of depth 4 (put−3 in last position
on the top line). Hence this cycle has depth 5.

The proof that there are no other free vertices is complete.

Each of the five families of free vertices is parametrized by a decomposition of A∗ into
seven ordered subsets. Therefore, the total number of free vertices is

Nfree = 5
(N + 6)!

6!
.

17.8. Number of vertices. The previous computations give

N(D) = (N2 + 9N + 21)Nst(D)− 2δ(D) +Nfree(D)

= 7(N2 + 9N + 21)
(N + 4)!

4!
− 27N2 + 157N + 180

2

(N + 4)!

5!
+ 5

(N + 6)!

6!

= 134
(N + 6)!

6!
.

18. THE QUASIHYPERELLIPTIC DIAGRAMS [2g + 1, g](0)(2g − 2) AND
[2g + 2, g](0)(g − 1, g − 1)

18.1. Alphabet, automorphisms, involutions. Let d be the number of letters and D :=
d− 2. The alphabet is the union of the cyclic group ZD and two special letters ±∞ which
are the first letters in the top and bottom lines. The automorphism group is ZD. For each
m ∈ ZD there is an involution Im which exchanges ±∞, fixes m and exchanges m ± k.
When D is even, it also fixes m+D/2 and the involutions Im and Im+D/2 coincide.

18.2. Standard vertices. There are D standard vertices, indexed by ZD. The vertex Sm
is

(
−∞ m+ 1 m+ 2 . . . m +∞
+∞ m− 1 m− 2 . . . m −∞

)
.

18.3. Edges of ΓD. The pairs of letters (α, β) which are ordered in the same way (in S0)
by πt and πb are the pairs with α ∈ ZD \ {0}, β = 0.

Such a pair provides an edge in Γ(D) between S0 and Sm.

Therefore Γ(D) is the full graph on D vertices.

18.4. Defaults. The default of each vertex is equal to (D−1). The default of the diagram
is equal to

δ(D) =
D(D − 1)

2
.
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18.5. Open linked vertices. Let α < β be a pair of letters in (ZD)∗. The two open linked
vertices obtained from this pair are(

−∞ 1 . . . α β + 1 . . . 0 +∞ α+ 1 . . . β
+∞ α− 1 α− 2 . . . 1 0 −∞ −1 . . . α+ 1 α

)
,

(
−∞ β + 1 β + 2 . . . −1 0 +∞ 1 . . . β − 1 β
+∞ −1 . . . β α− 1 . . . 0 −∞ β − 1 . . . α

)
.

The two vertices above will be abbreviated as(
−∞ (0↗ α] (β ↗ 0] +∞ (α↗ β]
+∞ (α↘ 0] −∞ (0↘ α]

)
,(

−∞ (β ↗ 0] +∞ (0↗ β]
+∞ (0↘ β] (α↘ 0] −∞ (β ↘ α]

)
.

18.6. Free vertices. For α, β as above, let us choose γ with α < γ < β (when β−α > 1;
when β − α = 1, we will not have associated free vertices).

We get a pair of free vertices of depth 6:

Ft :=

(
−∞ (0↗ α] (β ↗ 0] +∞ (α↗ γ] (γ ↗ β]
+∞ (α↘ 0] −∞ (0↘ β] (γ ↘ α] (β ↘ γ]

)
,

Fb :=

(
−∞ (β ↗ 0] +∞ (0↗ α] (γ ↗ β] (α↗ γ]
+∞ (0↘ β] (α↘ 0] −∞ (β ↘ γ] (γ ↘ α]

)
.

Consider the bottom cycle Ξb through Ft. If β = γ + 1, the only vertex of Ξb is Ft ,
which is inessential. Otherwise, the other vertices of Ξb are parametrized by an element θ
such that γ < θ < β:

Gb :=

(
−∞ (0↗ α] (β ↗ 0] +∞ (α↗ γ] (θ ↗ β] (γ ↗ θ]
+∞ (α↘ 0] −∞ (0↘ β] (γ ↘ α] (β ↘ θ] (θ ↘ γ]

)
.

These vertices have now depth 8 while Ξb has depth 7 (in all cases).
To understand the formation of theses vertices, it is better to change notations, using

α0 = α, α1 = β, α2 = γ, α3 = θ, . . .

for vertices starting from Ft and

α0 = β, α1 = α, α2 = γ, . . .

or vertices starting from Fb.
The αi should satisfy

α0 < α2 < . . . < α2n < . . . < α2n+1 < . . . < α3 < α1

in the first case and

α0 > α2 > . . . > α2n > . . . > α2n+1 > . . . > α3 > α1

in the second case.
With this new notation, we have

Ft = F (α, β, γ), Gb = F (α, β, γ, θ), Fb = (β, α, γ).
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The depth of a vertex F (α0, . . . , αn−1) is equal to 2n. The two cycles through this
vertex have depths equal to 2n− 1 and 2n+ 1.

It is fundamental to observe that free vertices are accessible from a well-defined
standard vertex! Only constrained linked vertices provide bridges between standard ver-
tices.

By comparing with the pure hyperelliptic case, we see that the number of free vertices
is

Nfree(D) = D(2D −D(D − 1)− 2).

18.7. Number of vertices. We have

N(D) = [D(D + 1) + 1]Nst(D)− 2δ(D) +Nfree(D)

= D(2D +D).

19. THE DIAGRAM [7, 3](0)(4)odd

19.1. Alphabet, Automorphisms and Involutions. The alphabet is A = {±∞} t Z5.
The automorphism group is Z5. There are five involutions, indexed by Z5. The involution
Im exchanges ±∞, fixes m and exchanges m± k.

19.2. Standard vertices. The standard vertices are indexed by an element of Z5 and a
standard vertex of the diagram [6, 2](4)odd (recall that there are seven of them, S,A±, B±, C±).
For instance

A+(0) =

(
−∞ 2 1 −1 −2 0 +∞
+∞ 1 2 −2 −1 0 −∞

)
.

With respect to section 6, we have changed ±5 into ±∞, ±3 into ±2. The automor-
phism group acts by adding m ∈ Z5 everywhere.

The number of standard vertices is thus

Nst(D) = 35.

19.3. Edges of Γ(D). Consider the edges joining a vertexX(0) (X = S,A+, . . .) to other
standard vertices in Γ(D). This is determined by a pair of letters (α, β) ordered in the same
way by πt and πb in X(0).

If α, β are different from 0, the corresponding edge will join X(0) to Y (0) according
to section 6.

The "new" edges correspond to β = 0, α = ±1,±2. One obtains for the other endpoint
Y (α) of the corresponding edge:

α −2 −1 1 2
X
S B− C+ C− B+

A+ A+ A+ A+ A+

B+ S C− B− C+

C+ B+ B− S C−


The other vertices are obtained from the involution.
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19.4. Default of vertices. One has

δ(S(m)) = 8, δ(A±(m)) = 7, δ(B±(m)) = δ(C±(m)) = 6.

19.5. Default of the diagram. The default of the diagram is

δ(D) = 115.

19.6. Open linked vertices. The open linked (to a standard vertex X(0)) vertices cor-
respond to pairs of letters (α, β) which are not ordered in the same way by πt and πt.
Therefore both α and β are different from 0, and the list is the same than in section 6.

20. THE DIAGRAM [9, 3](1)(13)

20.1. Alphabet, automorphism group, involutions. We will use as alphabet

A = {±∞, 0, a1, a2, b1, b2, c1, c2}.
The automorphism group G has order 24. Every element of G fixes 0,−∞,+∞ and pre-

serves the partition of the remaining 6 letters into the three pairs {a1, a2}, {b1, b2}, {c1, c2}.
This property defines a subgroup G′ of order 48 in the permutation group of these 6 letters.
The group G′ has a natural split homomorphism onto the permutation group of {a, b, c},
with section σ. The kernel of this homomorphism is isomorphic to {±1}3. Then G is the
subgroup of index 2 of G′ which is the kernel of the homomorphism G′ → Z2 which sends
σ(τ) to the signature of τ and a triple (εa, εb, εc) ∈ {±1}3 to εaεbεc29.

There are three natural top/bottom exchanging involutions, denoted by Ia, Ib, Ic. The
involution Ia fixes 0, a1, a2 and exchanges +∞,−∞, b1, b2 and c1, c2.

20.2. Superstandard vertices. The superstandard vertices are the standard vertices which
belong to the orbit under G of the vertex

S(b1, a1, c1) :=

(
−∞ b2 a2 b1 a1 c1 0 c2 ∞
∞ b1 a2 b2 a1 c2 0 c1 −∞

)
.

This vertex is fixed by Ia. In the graph Γ(D), this vertex has valence 15. Standard
vertices which are not superstandard have valence 11, 9, 8, 7 or 6. In Γ(D), the vertex
S(b1, a1, c1) is connected to three other superstandard vertices

S(b2, a2, c1) :=

(
−∞ b1 a1 b2 a2 c1 0 c2 ∞
∞ b2 a1 b1 a2 c2 0 c1 −∞

)
,

S(a1, b2, c1) :=

(
−∞ a2 b1 a1 b2 c1 0 c2 ∞
∞ a1 b1 a2 b2 c2 0 c1 −∞

)
,

S(a2, b1, c1) :=

(
−∞ a1 b2 a2 b1 c1 0 c2 ∞
∞ a2 b2 a1 b1 c2 0 c1 −∞

)
.

These four vertices form a complete subgraph of Γ(D) and is called a cluster of su-
perstandard vertices. There are six such clusters. The cluster above is the c1 cluster. The
stabilizer in G of this cluster is the stabilizer of c1 (or c2), a cyclic subgroup of order 4.

29From the paper of C. Boissy (see footnote 7), the group G has order 24, and (−1, 1, 1), (1,−1, 1) and
(1, 1,−1) (seen as elements of G′) are not in G. Hence the homomorphism φ from G′ to Z2 whose kernel is G
sends a triple (εa, εb, εc) to εaεbεc. To see that the composition φ ◦ σ is not trivial (hence is the signature), we
can consider the monotonous chain of length 4 starting from S(b1, a1, c1) given by the parameters (a1, b2).
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The involution Ia fixes the c1, c2, b1, b2 clusters. It exchanges the a1 and a2 clusters. In
the c1 cluster, it fixes the vertices S(b1, a1, c1), S(b2, a2, c1) and exchanges the other two
vertices. On the other hand, the involution Ib exchanges S(b1, a1, c1), S(b2, a2, c1) and
fixes the other two vertices.

20.3. Immediate neighborhood of a cluster. The standard vertices which are connected
(in Γ(D)) to a superstandard vertex in a cluster form the immediate neighborhood of this
cluster. Besides the four vertices of the cluster, there are 48 such vertices (for each cluster),
grouped into 4 groups of 12 because no vertex (except for the vertices of the cluster) is
connected to two distinct superstandard vertices.

Consider the standard vertices connected to S(b1, a1, c1) which are not superstandard.
There are 12 such vertices. Two of them have valence 11 and are exchanged by the involu-
tion Ia

At(b1, a1, c1) :=

(
−∞ a2 b1 a1 c1 0 c2 b2 +∞
+∞ a1 c2 b1 a2 b2 0 c1 −∞

)
,

Ab(b1, a1, c1) :=

(
−∞ a1 c1 b2 a2 b1 0 c2 +∞
+∞ a2 b2 a1 c2 0 c1 b1 −∞

)
.

They correspond to the pairs (b1, c1), (b2, c2) of letters for S(b1, a1, c1). The connex-
ions of S(b1, a1, c1) to the other vertices of the cluster correspond to the pairs (a2, a1), (b1, a1),
(b2, a1).

Among the other vertices connected in Γ(D) to S(b1, a1, c1), there are 5 of valence
9 and 5 of valence 7. Among each group of 5, there are two pairs whose elements are
exchanged by the involution Ia and one element which is fixed by this involution.

The best way to organize the 12 non superstandard vertices connected to Γ(D) is to
observe that they may be grouped into three groups Vt, V0, Vb with four elements each and
the following properties:

• Two elements of the same group are connected by an edge in Γ(D).
• Two element in distinct groups are not connected by an edge in Γ(D).
• The involution Ia exchanges Vt and Vb, and fixes V0.
• The vertex At(b1, a1, c1) belongs to Vt.
• The group Vt has, besides At(b1, a1, c1), two vertices of valence 7 and one of

valence 9. Similarly for Vb.
• The group V0 has three elements of valence 9 and one of valence 7.

20.4. Notations for vertices in the immediate neighborhood. The vertex of valence 9
in Vt is Bt := Bt(b1, a1, c1). One has

Bt :=

(
−∞ b1 a1 c1 0 c2 b2 a2 +∞
+∞ b2 a1 c2 b1 a2 0 c1 −∞

)
,

Bb :=

(
−∞ b1 a1 c1 b2 a2 0 c2 +∞
+∞ b2 a1 c2 0 c1 b1 a2 −∞

)
.

They correspond to the pairs (a2, c1) and (a2, c2) of S.
The three vertices of valence 9 in V0 are Ct, Cb, P (with P fixed by the involution Ia).

They correspond to the pairs (b1, 0), (b2, 0), (a2, 0) of S. One has

Ct :=

(
−∞ a1 c1 0 b2 a2 b1 c2 +∞
+∞ a2 b2 a1 c2 0 b1 c1 −∞

)
,



52 JEAN-CHRISTOPHE YOCCOZ

Cb :=

(
−∞ a2 b1 a1 c1 0 b2 c2 +∞
+∞ a1 c2 0 b1 a2 b2 c1 −∞

)
,

P :=

(
−∞ b1 a1 c1 0 b2 a2 c2 +∞
+∞ b2 a1 c2 0 b1 a2 c1 −∞

)
.

The vertex in V0 of valence 7, associated to the pair (a1, 0) of S, is

T :=

(
−∞ c1 0 b2 a2 b1 a1 c2 +∞
+∞ c2 0 b1 a2 b2 a1 c1 −∞

)
.

Finally, the two vertices of valence 7 in Vt are

Et :=

(
−∞ a1 c1 0 c2 b2 a2 b1 +∞
+∞ a2 b2 a1 c2 b1 0 c1 −∞

)
,

Ft :=

(
−∞ c1 0 c2 b2 a2 b1 a1 +∞
+∞ c2 b1 a2 b2 a1 0 c1 −∞

)
.

They are associated to the pairs (b1, c2), (a1, c2) of S. The corresponding vertices in
Vb, associated to the pairs (b2, c1), (a1, c1) of S, are

Eb :=

(
−∞ a2 b1 a1 c1 b2 0 c2 +∞
+∞ a1 c2 0 c1 b1 a2 b2 −∞

)
,

Fb :=

(
−∞ c1 b2 a2 b1 a1 0 c2 +∞
+∞ c2 0 c1 b1 a2 b2 a1 −∞

)
.

20.5. Other edges in the immediate neighborhood of the cluster. By "other edges" we
mean edges whose endpoints belong to the immediate neighborhood of the cluster, are not
superstandard, nor in the same group (Vt, V0, Vb).

All three free edges from T (b1, a1, c1) are of this type, connecting this vertex with
Ct(a1, b2, c1), Cb(a2, b1, c1) and P (b2, a2, c1).

All three free edges from Ft(b1, a1, c1) are also of this type, connecting this vertex with
Et(a1, b2, c1), At(a2, b1, c1) and Bt(b2, a2, c1).

The other edges of this form are obtained by the automorphisms and involutions of the
diagram.

This leaves the T and F vertices with no free edges, the E vertices with 2 free edges,
the B,C, P vertices with 4 free edges and the A vertices with 6 free edges.

20.6. Edges with endpoints in immediate neighborhood of distinct clusters. There is
an edge between At(b1, a1, c1) and the vertex Cb(c1, a2, b1) in the immediate neighbor-
hood of the b1 cluster.

The involution Ia takes this edge to an edge between Ab(b1, a1, c1) and Ct(c1, a2, b1).
Notice that S(c1, a2, b1) is fixed by Ia.

There is an edge between Bt(b1, a1, c1) and the vertex P (c1, b1, a1) in the immediate
neighborhood of the a1 cluster.

The involution Ia takes this edge to an edge between Bb(b1, a1, c1) and P (c1, b2, a2),
in the immediate neighborhood of the a2 cluster. Recall that the involution Ia exchanges
the a1 and the a2 clusters.

All edges of this type are deduced from theses four edges by the automorphism group
G.
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After taking these edges into account, the P and E vertices are left with 2 free edges,
the Ct, Cb and B vertices with 3 free edges and the A vertices with 5 free edges. The free
endpoints of these free edges do not belong to the immediate neighborhood of any cluster.

We observe that the different type of standard vertices encountered so far can be recog-
nized by the position of 0 in the top and bottom line:

S → (7, 7) R→ (6, 6) P → (5, 5) Q→ (4, 4) T → (3, 3)
At → (6, 7) Ab → (7, 6) Bt → (5, 7) Bb → (7, 5)
Ct → (4, 6) Cb → (6, 4) Et → (4, 7) Eb → (7, 4)
Ft → (3, 7) Fb → (7, 3) Gt → (3, 5) Gb → (5, 3)
Ht → (3, 4) Hb → (4, 3) It → (3, 6) Ib → (6, 3)

20.7. Vertices connected to the immediate neighborhood of clusters. We start with the
two free edges from P (b1, a1, c1), which are symmetric w.r.t. the involution Ia. Denote
their free endpoints by

Gt :=

(
−∞ c1 0 b2 a2 c2 b1 a1 +∞
+∞ c2 b2 a1 0 b1 a2 c1 −∞

)
,

Gb :=

(
−∞ c1 b1 a1 0 b2 a2 c2 +∞
+∞ c2 0 b1 a2 c1 b2 a1 −∞

)
.

Notice that we have Gt → (3, 5) and Gb → (5, 3). Both vertices have valence 7. The
vertex Gt(b1, a1, c1) is also connected to Ab(c1, b2, a2), Bt(b2, a2, c1) and Bb(a2, c2, b1).
The vertexGb(b1, a1, c1) is also connected toAt(c1, b1, a1),Bb(b2, a2, c1) andBt(a1, c1, b1).

Now the B vertices have one free edge, the E vertices have 2, the C and G have 3 and
the A have 4.

We look at the free endpoints of the remaining free edges from the B vertices, which
are denoted by Hb for Bt and Ht for Bb

Ht :=

(
−∞ a2 0 b1 a1 c1 b2 c2 +∞
+∞ a1 c2 0 b2 c1 b1 a2 −∞

)
,

Hb :=

(
−∞ a1 c1 0 b1 c2 b2 a2 +∞
+∞ a2 0 b2 a1 c2 b1 c1 −∞

)
.

Notice that we have Ht → (3, 4) and Hb → (4, 3). Both vertices have valence 6.
Besides Bb, the vertex Ht(b1, a1, c1) is also connected to Et(c2, b1, a2), Cb(b2, c2, a2),
Gb(b2, a2, c1),Hb(b1, c1, a2). BesidesBt(b1, a1, c1), the vertexHb(b1, a1, c1) is also con-
nected to Eb(c2, b2, a1), Ct(b2, c1, a1), Gt(b2, a2, c1), Ht(b1, c2, a1).

Now the E vertices have only 1 free edge (of valence 8), the C and G vertices have
2 free edges (one of valence 6, one of valence 8), the H vertices have only 1 free edge
(of valence 8) and the A vertices have 4 free edges (2 of valence 6, 2 of valence 8). We
have make an "abus de langage" by writing the valence of a free edge instead of its free
endpoint.

We look at the free endpoints of the remaining free edges of valence 6 from the Ct and
Cb vertices, which are denoted by It and Ib respectively

It :=

(
−∞ c1 0 b2 a2 b1 c2 a1 +∞
+∞ c2 a2 b2 a1 0 b1 c1 −∞

)
,
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Ib :=

(
−∞ c1 a2 b1 a1 0 b2 c2 +∞
+∞ c2 0 b1 a2 b2 c1 a1 −∞

)
.

Notice that we have It → (3, 6) and Ib → (6, 3). Both vertices have valence 6. Be-
sides Ct, the vertex It(b1, a1, c1) is also connected to At(a2, b1, c1), Ab(c1, a2, b1) and
Gb(b1, c1, a2). Besides Cb, the vertex Ib(b1, a1, c1) is also connected to Ab(a1, b2, c1),
At(c1, a2, b1) and Gt(b1, c2, a1).

Now the E, C, G, H vertices have only one free edge (of valence 8) while the A and I
vertices have 2 free edges (both of valence 8).

The two vertices of valence 8 connected to At correspond to positions (4, 4) and (6, 6)
for the 0 letter. We denote them by Q and R respectively.

Q :=

(
−∞ a1 c1 0 a2 b1 c2 b2 +∞
+∞ a2 b2 0 a1 c2 b1 c1 −∞

)
,

R :=

(
−∞ c1 a2 b1 a1 0 c2 b2 +∞
+∞ c2 b1 a2 b2 0 c1 a1 −∞

)
.

BesidesAt(b1, a1, c1),Q(b1, a1, c1) is connected toAb(c1, a2, b1),Et(b2, c1, a1),Eb(c2, b2, a1),
It(a1, b2, c1), Ib(a1, c1, b1), Gt(a1, b2, c1), Gb(a1, c1, b1).

BesidesAt(b1, a1, c1), the vertexR(b1, a1, c1) is connected toAb(a1, b2, c1),Ct(c1, b1, a1),
Cb(c1, a2, b1), It(c1, b1, a1), Ib(c1, a2, b1), Ht(c1, a2, b1), Hb(c1, b1, a1).

There are no more free edges so that one can hope that we have now all the standard
vertices.

20.8. Number of standard vertices. There are 21 orbits of standard vertices for the action
of G: Q,R, S, T, P,At, Ab, Bt, Bb, Ct, Cb, Et, Eb, Ft, Fb, Gt, Gb, Ht, Hb, It, Ib. There-
fore the total number of standard vertices is

Nst = 24× 21 = 504.

The default of Γ(D) is equal to 2052 = 12× 171.

20.9. Up to height 4. There are 3528 = 7 × 21 × 24 vertices with Ht = 2, Hb = 4 and
3528 vertices with Hb = 2, Ht = 4.

Therefore there are 504 cycles of height 3, each type and each length ` ∈ {1, 2, 3, 4, 5, 6, 7}.
Therefore there are 10584 = 21× 21× 24 vertices with Ht = H = 4, and 10584 with

Hb = H = 4.
The number of vertices with Hb = Ht = 4 is 4104 = 24 × 171. Therefore there are

6480 = 24× 270 vertices with Ht = 4, Hb = 6 and 6480 with Hb = 4, Ht = 6.

20.10. Cycles of height 5. There are 2016 = 24 × 84 cycles of top type,height 5 and
length 1.

There are 1176 = 24 × 49 cycles of top type,height 5 and length 2. Among these,
336 = 14× 24 have two vertices of height 4, and 840 = 24× 35 have one vertex of height
4, one vertex of height 6.

There are 576 = 24 × 24 cycles of top type,height 5 and length 3. Among these,
96 = 4 × 24 have three vertices of height 4, 240 = 24 × 10 have two vertices of height
4, one vertex of height 6, and 240 = 24 × 10 have one vertex of height 4, two vertices of
height 6.
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There are 360 = 24 × 15 cycles of top type,height 5 and length 4. Among these,
72 = 3 × 24 have four vertices of height 4, 72 = 24 × 3 have three vertices of height 4,
one vertex of height 6, 144 = 24× 6 have two vertices of height 4, two vertices of height
6, and 72 = 24× 3 have three vertices of height 6, one vertex of height 4.

There are 240 = 24 × 10 cycles of top type,height 5 and length 5. Among these, 48
have five vertices of height 4, 48 have four vertices of height 4, one vertex of height 6, 48
have three vertices of height 4, two vertices of height 6, 48 have two vertices of height 4,
three vertices of height 6, and 48 have one vertex of height 4, four vertices of height 6.

There are 120 = 24 × 5 cycles of top type,height 5 and length 6. For each j ∈
{1, 2, 3, 4, 5}, there are 24 such cycles which contain j vertices of height 4 and 6 − j
vertices of height 6.

Summing up, there are 2976 = 124 × 24 vertices with Ht = H = 6, and 2976 with
Hb = H = 6.

20.11. Vertices of height 6. We consider the vertices V withHt = H = 6. We call Ct the
pure cycle of top type , height 5 through V , and Cb the pure cycle of bottom type through
V . The height of Cb is equal to 5 or 7, corresponding for V to Hb = 6 or 8. We call `t, `b
the lengths of Ct,Cb respectively.

Among the 840 = 24 × 35 vertices V with `t = 2, 288 = 24 × 12 have Hb = 6 (they
are then the middle vertices of monotonous chains of length 6) and 552 = 24 × 23 have
Hb = 8: 360 = 24× 15 with `b = 1, 120 = 24× 5 with `b = 2, 24 with `b = 3, 24 with
`b = 4, 24 with `b = 5.

Among the 720 = 24× 30 vertices V with `t = 3,
• 240 = 24 × 10 are linked through Ct to two vertices of height 4 (At/Et, Ab/Et,
Q/Fb, R/Ft, T/Gt, T/Gb, Ft/Gt, Fb, Gb, Ht/It, Hb/Ib)

• 480 = 24× 20 come in pairs linked through Ct to a single vertex of height 4 (Bt,
Bb, Ct, Cb, Eb, Eb, Ht, Hb, It, Ib).

Among these 720 vertices,
• 288 = 24× 12 have Hb = 6,
• 312 = 24× 13 have Hb = 8, `b = 1,
• 48 have Hb = 8, `b = 2,
• 24 have Hb = 8, `b = 3,
• 24 have Hb = 8, `b = 4,
• 24 have Hb = 8, `b = 5.

Among the 576 = 24× 24 vertices V with `t = 4,
• 72 = 24 × 3 are linked through Ct to three vertices of height 4 (Bt/Bb/It,
Ct/Cb/Hb, Q/R/Et). They all have Hb = 8, `b = 1.

• 288 = 24 × 12 vertices come in pairs linked through Ct to two vertices of height
4 (P/Fb, P/Ft, T/It, T/Hb, Ft/Ht, Fb/Ib); 120 = 24 × 5 have Hb = 6, 96 =
24 × 4 have Hb = 8, `b = 1, 48 = 24 × 2 have Hb = 8, `b = 2, 24 have
Hb = 8, `b = 3

• 216 = 24×9 vertices come in triples joined through Ct to a single vertex of height
4 (Et, Gt, Gb); 96 = 24× 4 have Hb = 6, 72 = 24× 3 have Hb = 8, `b = 1, 24
have Hb = 8, `b = 3, 24 have Hb = 8, `b = 5.

Among the 480 = 24× 20 vertices V with `t = 5,
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• 48 are linked through Ct to four vertices of height 4 (At/Ct/Eb/Gt,Ab/Bt/Eb/Gb);
these vertices have Hb = 8, `b = 1.

• 96 = 24×4 come in pairs linked through Ct to three vertices of height 4 (Bb/Et/Hb,
Cb/Et/It); 48 have Hb = 8, `b = 1, 48 have Hb = 8, `b = 2.

• 144 = 24× 6 come in triples linked through Ct to two vertices of height 4 (Q/Ft,
R/Fb); 48 have Hb = 6, 48 have Hb = 8, `b = 1, 24 have Hb = 8, `b = 2, 24
have Hb = 8, `b = 4.

• 192 = 24× 8 come in quadruples linked through Ct to a single vertex of height 4
(Ht, Ib); 48 have Hb = 6, 48 have Hb = 8, `b = 1, 48 have Hb = 8, `b = 2, 24
have Hb = 8, `b = 4, 24 have Hb = 8, `b = 5.

Among the 360 = 24× 15 vertices V with `t = 6,
• 24 are linked through Ct to five vertices of height 4 (P/Q/R/Ft/Fb); they have
Hb = 8, `b = 1.

• 48 come in pairs linked through Ct to four vertices of height 4 (Bt/Ct/Ht/Ib); 24
have Hb = 8, `b = 1, 24 have Hb = 8, `b = 2.

• 72 = 24 × 3 come in triples linked through Ct to three vertices of height 4
(Et/Gt/Gb); 24 have Hb = 8, `b = 1, 24 have Hb = 8, `b = 2, 24 have
Hb = 8, `b = 3.

• 96 = 24 × 4 come in quadruples linked through Ct to two vertices of height 4
(Hb/It); 24 have Hb = 8, `b = 1, 24 have Hb = 8, `b = 2, 24 have Hb = 8, `b =
3, 24 have Hb = 8, `b = 4.

• 120 = 24× 5 come in quintuples linked through Ct to a single vertex of height 4
(T ); 24 have Hb = 8, `b = 1, 24 have Hb = 8, `b = 2, 24 have Hb = 8, `b = 3,
24 have Hb = 8, `b = 4, 24 have Hb = 8, `b = 5.

Summing up, there are 888 = 24 × 37 vertices with Ht = Hb = 6, 2088 = 24 × 87
vertices with Ht = 6, Hb = 8, and 2088 vertices with Ht = 8, Hb = 6. Of the 2088
vertices with Ht = 6, Hb = 8, 1224 = 24 × 51 have `b = 1 and 864 = 24 × 36 have
`b > 1: 432 = 24× 18, with `b = 2, 168 = 24× 7 with `b = 3, 144 = 24× 6 with `b = 4
and 120 = 24× 5 with `b = 5.

20.12. Cycles of height 7. We have seen that there are 1224 = 24 × 51 cycles of each
type, height 7, length 1.

There are 264 = 24× 11 pure cycles of bottom type, height 7, length 2. 168 = 24× 7
are the middle cycles of a monotonous chain of length 7. The other 96 = 24× 4 have one
vertex of height 6 and one vertex with Hb = 8, Ht = 10. The top cycles through these
vertices have length 1.

There are 72 = 24× 3 pure cycles of bottom type, height 7, length 3. 24 of these cycles
contain only vertices of height 6. The other 48 contain 2 vertices of height 6 and one vertex
with Hb = 8, Ht = 10. The top cycles through these vertices have length 1.

There are 48 = 24 × 3 pure cycles of bottom type, height 7, length 4. 24 of these
cycles contain only vertices of height 6. The other 24 contain 2 vertices of height 6 and
two vertices with Hb = 8, Ht = 10, giving 48 such vertices. The top cycle through these
vertices has length 1 for 24 of them, length 2 for the other 24. The other vertex of these
pure cycles of top type, height 9, length 2 hasHt = 10, Hb = 12; the bottom cycle through
it (of height 11) has length 1.

There are 24 pure cycles of bottom type, height 7, length 5. Their vertices have all
height 6.
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21. THE DIAGRAM [7, 3](2, 2)Odd

21.1. Alphabet, Automorphisms, Involutions. We choose as alphabet A = {±∞, a+, a−}∪
Z3. The automorphism group is isomorphic to Z3, acting by addition on Z3 and fixing the
other elements of A. There are three time-reversing involutions, indexed by Z3. The invo-
lution I0 fixes 0 and exchanges ±∞, ±1, a±.

21.2. Standard vertices. There are 33 standard vertices. They are indexed by a letter and
an element of Z3. The automorphism group acts by j.X(i) = X(i+ j). When i = 0, the
11 vertices are

S :=

(
−∞ 1 −1 0 a− a+ +∞
+∞ −1 1 0 a+ a− −∞

)
,

P :=

(
−∞ a− −1 a+ 0 1 +∞
+∞ a+ 1 a− 0 −1 −∞

)
,

Q :=

(
−∞ a− 0 1 a+ −1 +∞
+∞ a+ 0 −1 a− 1 −∞

)
,

A+ :=

(
−∞ a− a+ 1 −1 0 +∞
+∞ a+ −1 1 0 a− −∞

)
,

A− :=

(
−∞ a− 1 −1 0 a+ +∞
+∞ a+ a− −1 1 0 −∞

)
,

B+ :=

(
−∞ −1 0 a− a+ 1 +∞
+∞ 0 a+ −1 1 a− −∞

)
,

B− :=

(
−∞ 0 a− 1 −1 a+ +∞
+∞ 1 0 a+ a− −1 −∞

)
,

C+ :=

(
−∞ −1 0 a− 1 a+ +∞
+∞ 0 a+ a− −1 1 −∞

)
,

C− :=

(
−∞ 0 a− a+ 1 −1 +∞
+∞ 1 0 a+ −1 a− −∞

)
,

D+ :=

(
−∞ 0 a− −1 a+ 1 +∞
+∞ 1 a− 0 a+ −1 −∞

)
,

D− :=

(
−∞ −1 a+ 0 a− 1 +∞
+∞ 0 a+ 1 a− −1 −∞

)
.

The involution I0 fixes P,Q, S and exchanges A±, B±, C±, D±.

21.3. The graph Γ(D).
• S has valence 8 and is connected to S(±1), A±, B±, C±;
• P has valence 4 and is connected to D±, C+(1), C−(−1);
• Q has valence 4 and is connected to B+(1), B−(−1), D+(1), D−(−1);
• A+ has valence 5 and is connected to S,B+, B+(−1), C−, C−(1);
• B+ has valence 6 and is connected to S,Q(−1), A+, A+(1), C−, D+;
• C+ has valence 5 and is connected to S, P (−1), A−, A−(1), B−;
• D+ has valence 4 and is connected to P,Q(−1), B+, D−.

The default of the diagram is 3× 28 = 84.
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21.4. Up to height 4. There are 33 = 3× 11 cycles of height 1 of top type (resp. bottom
type). There are 165 vertices with Ht = 2, Hb = 4 and 165 with Hb = 2, Ht = 4.
Therefore there are 165 cycles of top type (resp. bottom type) and height 3, 33 for each
length 1, 2, 3, 4, 5. Therefore there are 330 vertices withHt(π) = H(π) = 4, and 330 with
Hb(π) = H(π) = 4. To each edge in Γ(D) are associated two vertices withHt = Hb = 4.
Therefore there are 168 such vertices, leaving 162 vertices with Ht = 4, Hb = 6 and 162
with Hb = 4, Ht = 6.

21.5. Cycles of height 5 and vertices of height 6. There are 72 = 3× 24 pure cycles of
top type, height 5, length 1.

There are 24 = 3 × 8 pure cycles of top type, height 5, length 2. 15 of these have two
vertices of height 4, joining P (i) toA−(i−1), P (i) toQ(i+1), Q(i) toA+(i+1), B+(i)
to C−(i − 1), B−(i) to C−(i). 9 of these have one vertex of height 4 and one vertex of
height 6.

There are 12 = 3 × 4 pure cycles of top type, height 5, length 3. Six of these have
two vertices of height 4 (linked to P (i), A+(i − 1), resp. to Q(i), A−(i + 1)) and one of
height 6. The other six have three vertices of height 4 (joining B+(i), C+(i), D−(i), resp.
C+(i), D+(i− 1), B−(i− 1)).

There are 6 = 3 × 2 pure cycles of top type, height 5, length 4. Three of these have
three vertices of height 4 (linked to C−(i), D+(i), D−(i + 1)) and one of height 6. The
other three have four vertices of height 4, linked to P (i), Q(i− 1), A+(i+ 1), A−(i+ 1).

Altogether, there are 18 = 3× 6 vertices with Ht = H = 6.

There are 27 vertices of height 6: 9 with Ht = Hb = 6, 9 with Ht = 8, Hb = 6, 9 with
Ht = 6, Hb = 8. The pure cycles of top type through the vertices withHt = 8 have length
1. Similarly for the vertices with Hb = 8. Finally, the vertices with Ht = Hb = 6 are the
middle vertices of monotonous chains of length 6: Three joining C+(i) to C−(I), which
are preserved by the involution; three joining D+(i) to A+(i)/Q(i+ 1), and three joining
D−(i) to A−(i)/Q(i− 1).

21.6. Summary. There are

• 33 vertices of height 0;
• 330 vertices of height 2;
• 492 vertices of height 4;
• 27 vertices of height 6;

There are apparently 882 vertices in the diagram.

22. THE DIAGRAM [7, 3](1)(3)

22.1. Alphabet, Automorphisms, Involutions. We choose as alphabet

A := {±∞, 0, a0, a1, b0, b1}.

The automorphism group has order 2, the non trivial element exchanges a0/a1, b0/b1and
fixes the other letters.

There are two involutions I0 and I1. The involution I0 exchanges +∞/ −∞, a0/b0,
a1/b1. The involution I1 exchanges +∞/−∞, a0/b1, b0/a1.
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22.2. Standard vertices. There are 16 standard vertices which are denoted by S(i), T (i),
A±(i), B±(i), C±(i), i ∈ Z2.

The nontrivial automorphism acts by X(i) → X(i + 1). The involution I0 fixes S(0)
and S(1), exchanges T (0)/T (1) and also exhanges X+(i)/X−(i), for X = A,B,C,D
and i ∈ Z2.

One has

S(0) :=

(
−∞ b1 a1 a0 0 b0 +∞
+∞ a1 b1 b0 0 a0 −∞

)
,

T (0) :=

(
−∞ a0 0 a1 b0 b1 +∞
+∞ b1 0 b0 a1 a0 −∞

)
,

A+(0) :=

(
−∞ a1 a0 0 b0 b1 +∞
+∞ b0 a1 b1 0 a0 −∞

)
,

B+(0) :=

(
−∞ a0 0 b0 b1 a1 +∞
+∞ b1 b0 a1 0 a0 −∞

)
,

C+(0) :=

(
−∞ a0 a1 0 b0 b1 +∞
+∞ b1 0 a0 b0 a1 −∞

)
,

A−(0) :=

(
−∞ a0 b1 a1 0 b0 +∞
+∞ b1 b0 0 a0 a1 −∞

)
,

B−(0) :=

(
−∞ a1 a0 b1 0 b0 +∞
+∞ b0 0 a0 a1 b1 −∞

)
,

C−(0) :=

(
−∞ a1 0 b0 a0 b1 +∞
+∞ b0 b1 0 a0 a1 −∞

)
.

22.3. The graph Γ(D).
• The vertex S(0) has valence 6; it is connected to A±(0), B±(0), C±(1);
• The vertex T (0) has valence 2; it is connected to A+(0), A−(1);
• The vertex A+(0) has valence 4; it is connected to S(0), T (0), B+(0), C+(0);
• The vertex A−(0) has valence 4; it is connected to S(0), T (1), B−(0), C−(0);
• The vertex B+(0) has valence 2; it is connected to S,A+(0);
• The vertex B−(0) has valence 2; it is connected to S,A−(0);
• The vertex C+(0) has valence 3; it is connected to S(1), A+(0), C−(0);
• The vertex C−(0) has valence 3; it is connected to S(1), A−(0), C+(0).

The default of the diagram is equal to 26.

22.4. Up to height 4. There are 16 cycles of height 1 and top (resp. bottom type). There
are 80 vertices with Ht = 2, Hb = 4 and 80 with Hb = 2, Ht = 4. Therefore there
are 80 cycles of top type (resp. bottom type) and height 3, 16 for each length 1, 2, 3, 4, 5.
Therefore there are 160 vertices withHt(π) = H(π) = 4, and 160 withHb(π) = H(π) =
4. To each edge in Γ(D) are associated two vertices with Ht = Hb = 4. Therefore there
are 52 such vertices, leaving 108 vertices with Ht = 4, Hb = 6 and 108 with Hb =
4, Ht = 6.
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22.5. Cycles of height 5 and vertices of height 6. There are 44 = 2× 22 pure cycles of
top type, height 5, length 1.

There are 22 = 2 × 11 pure cycles of top type, height 5, length 2. 6 of these have
two vertices of height 4, joining T (i) to C−(i − 1), B+(i) to C−(i − 1), A−(i) to
C−(i + 1). 16 of these have one vertex of height 4 and one vertex of height 6 (from
S(i), T (i), A−(i), B−(i)C+(i), B−(i), A+(i), B+(i)).

There are 12 = 2×6 pure cycles of top type, height 5, length 3. Four of these have three
vertices of height 4, joining T (i)/B−(i − 1)/C+(i) and A+(i)/A−(i − 1)/C+(i − 1).
Four of them have two vertices of height 4 (T (i)/B+(i) and B+(i)/A−(i)) and a vertex
of height 6. Four of them have one vertex of height 4 (C−(i) and B−(i)) and two vertices
of height 6.

There are 6 = 2 × 3 pure cycles of top type, height 5, length 4. Two of these have
one vertex of height 6 and three of height 4 (A+(i)/B−(i)/C−(i)), another two have two
vertices of height 6 and two of height 4 (B+(i)/C+(i)), and the last two have three vertices
of height 6 and one of height 4 (T (i)).

Altogether, there are 42 = 2× 21 vertices with Ht = H = 6.
There are 80 vertices of height 6: 6 with Ht = Hb = 6,36 with Ht = 8, Hb = 6, 36

with Ht = 6, Hb = 8. The vertices with Ht = Hb = 6 are middle vertices of monotonous
chains joining C+(i)/B+(i − 1), B−(i)/C−(i − 1), B−(i)/B+(i). Of the 36 vertices
withHt = 6, Hb = 8, 24 have a bottom cycle of height 7, length 1 through them. There are
4 cycles of height 7, bottom type, length 2. Two are the middle elements of monotonous
chains of length 7 joining A+(i− 1) to B+(i)/C+(i). The other two, linked to T (i), have
an element of height 6 and an element with Hb = 8, Ht = 10. There are also two cycles of
height 7, bottom type, length 3. They join T (i), B+(i), C−(i− 1). There are 4 vertices of
height 8, 2 with Hb = 8, Ht = 10 and two with Ht = 8, Hb = 10. The top cycles through
the vertices with Hb = 8, Ht = 10 have length 1.

22.6. Summary. There are
• 16 vertices of height 0;
• 160 vertices of height 2;
• 268 vertices of height 4;
• 80 vertices of height 6;
• 4 vertices of height 8.

There are apparently 528 vertices in the diagram.

23. THE DIAGRAM [8, 4](6)E

23.1. Alphabet, Automorphisms, Involutions. We use the alphabet A = {±∞,±1,±2,±3}.
There is no non trivial automorphism. The involution exchanges ±∞,±1,±2,±3.

23.2. Standard vertices. There are 44 standard vertices. Two of them are fixed by the
involution

X :=

(
−∞ 2 −2 1 3 −3 −1 +∞
+∞ −2 2 −1 −3 3 1 −∞

)
,

Y :=

(
−∞ 2 −1 1 −2 −3 3 +∞
+∞ −2 1 −1 2 3 −3 −∞

)
,

The other 42 come in pairs of vertices exchanged by the involution.
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A+ :=

(
−∞ −1 1 −2 3 −3 2 +∞
+∞ 3 1 −1 2 −3 −2 −∞

)
,

A− :=

(
−∞ −3 −1 1 −2 3 2 +∞
+∞ 1 −1 2 −3 3 −2 −∞

)
,

B+ :=

(
−∞ −3 2 −1 1 −2 3 +∞
+∞ 1 −1 2 3 −3 −2 −∞

)
,

B− :=

(
−∞ −1 1 −2 −3 3 2 +∞
+∞ 3 −2 1 −1 2 −3 −∞

)
,

C+ :=

(
−∞ −2 −3 2 −1 1 3 +∞
+∞ −1 2 3 −3 −2 1 −∞

)
,

C− :=

(
−∞ 1 −2 −3 3 2 −1 +∞
+∞ 2 3 −2 1 −1 −3 −∞

)
,

D+ :=

(
−∞ 1 −2 −3 2 −1 3 +∞
+∞ 2 3 −3 −2 1 −1 −∞

)
,

D− :=

(
−∞ −2 −3 3 2 −1 1 +∞
+∞ −1 2 3 −2 1 −3 −∞

)
,

E+ :=

(
−∞ −1 1 −2 −3 2 3 +∞
+∞ 3 −3 −2 1 −1 2 −∞

)
,

E− :=

(
−∞ −3 3 2 −1 1 −2 +∞
+∞ 1 −1 2 3 −2 −3 −∞

)
,

F+ :=

(
−∞ −2 1 3 −3 −1 2 +∞
+∞ −1 −2 2 −3 3 1 −∞

)
,

F− :=

(
−∞ 1 2 −2 3 −3 −1 +∞
+∞ 2 −1 −3 3 1 −2 −∞

)
,

G+ :=

(
−∞ −2 1 3 −3 2 −1 +∞
+∞ −1 −3 −2 2 3 1 −∞

)
,

G− :=

(
−∞ 1 3 2 −2 −3 −1 +∞
+∞ 2 −1 −3 3 −2 1 −∞

)
,

H+ :=

(
−∞ 1 3 −3 2 −2 −1 +∞
+∞ 2 −1 −3 −2 3 1 −∞

)
,

H− :=

(
−∞ −2 1 3 2 −3 −1 +∞
+∞ −1 −3 3 −2 2 1 −∞

)
,

I+ :=

(
−∞ 1 3 −3 −1 2 −2 +∞
+∞ 2 −1 −2 −3 3 1 −∞

)
,

I− :=

(
−∞ −2 1 2 3 −3 −1 +∞
+∞ −1 −3 3 1 −2 2 −∞

)
,

J+ :=

(
−∞ −2 −1 1 3 −3 2 +∞
+∞ −1 2 −3 −2 3 1 −∞

)
,
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J− :=

(
−∞ 1 −2 3 2 −3 −1 +∞
+∞ 2 1 −1 −3 3 −2 −∞

)
,

K+ :=

(
−∞ 1 −2 3 −3 2 −1 +∞
+∞ 2 3 1 −1 −3 −2 −∞

)
,

K− :=

(
−∞ −2 −3 −1 1 3 2 +∞
+∞ −1 2 −3 3 −2 1 −∞

)
,

L+ :=

(
−∞ 1 −2 3 −3 −1 2 +∞
+∞ 2 −3 3 1 −1 −2 −∞

)
,

L− :=

(
−∞ −2 3 −3 −1 1 2 +∞
+∞ −1 2 −3 3 1 −2 −∞

)
,

M+ :=

(
−∞ −2 3 −3 2 −1 1 +∞
+∞ −1 2 3 1 −3 −2 −∞

)
,

M− :=

(
−∞ 1 −2 −3 −1 3 2 +∞
+∞ 2 −3 3 −2 1 −1 −∞

)
,

N+ :=

(
−∞ 1 −2 −1 3 −3 2 +∞
+∞ 2 −3 −2 3 1 −1 −∞

)
,

N− :=

(
−∞ −2 3 2 −3 −1 1 +∞
+∞ −1 2 1 −3 3 −2 −∞

)
,

O+ :=

(
−∞ −1 1 3 −2 −3 2 +∞
+∞ 3 −1 2 −3 −2 1 −∞

)
,

O− :=

(
−∞ −3 1 −2 3 2 −1 +∞
+∞ 1 −1 −3 2 3 −2 −∞

)
,

P+ :=

(
−∞ −1 3 1 −2 −3 2 +∞
+∞ 3 2 −3 −2 1 −1 −∞

)
,

P− :=

(
−∞ −3 −2 3 2 −1 1 +∞
+∞ 1 −3 −1 2 3 −2 −∞

)
,

Q+ :=

(
−∞ 1 3 −2 −3 2 −1 +∞
+∞ 2 3 −1 −3 −2 1 −∞

)
,

Q− :=

(
−∞ −2 −3 1 3 2 −1 +∞
+∞ −1 −3 2 3 −2 1 −∞

)
,

R+ :=

(
−∞ 1 3 −2 −3 −1 2 +∞
+∞ 2 −3 3 −1 −2 1 −∞

)
,

R− :=

(
−∞ −2 3 −3 1 2 −1 +∞
+∞ −1 −3 2 3 1 −2 −∞

)
,

S+ :=

(
−∞ 1 3 −2 −1 −3 2 +∞
+∞ 2 −3 −2 3 −1 1 −∞

)
,

S− :=

(
−∞ −2 3 2 −3 1 −1 +∞
+∞ −1 −3 2 1 3 −2 −∞

)
,
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T+ :=

(
−∞ 1 3 −3 −2 −1 2 +∞
+∞ 2 −3 −1 −2 3 1 −∞

)
,

T− :=

(
−∞ −2 3 1 2 −3 −1 +∞
+∞ −1 −3 3 2 1 −2 −∞

)
,

U+ :=

(
−∞ 1 −1 3 −2 −3 2 +∞
+∞ 2 −3 −2 1 3 −1 −∞

)
,

U− :=

(
−∞ −2 3 2 −1 −3 1 +∞
+∞ −1 1 −3 2 3 −2 −∞

)
.

23.3. The diagram Γ(D). Four vertices (X,Y,A±) have valence 8

• X is connected to F±, G±, H±, I±;
• Y is connected to B±, C±, D±, E±:
• A+ is connected to A−, B+, L±, J+,K+,M+, N+;

Four vertices (B±, O±) have valence 7

• B+ is connected to Y,A+, C+, D+, E+,K+,M+;
• O+ is connected to C+, J+, Q+, R+, S+, U+,K−.

Six vertices (C±, J±,K±) have valence 6

• C+ is connected to Y,B+, D+, E+, O+, Q+;
• J+ is connected to A+, H+, N+, O+, S+, T+;
• K+ is connected to A+, B+, G+,M+, O−, R−.

Four vertices (D±, F±) have valence 5

• D+ is connected to Y,B+, C+, E+, P+;
• F+ is connected to X, I+, L+, R+, T+.

Twelve vertices (E±, G±, L±,M±, P±, Q±) have valence 4

• E+ is connected to Y,B+, C+, D+;
• G+ is connected to X,H+,K+, Q+;
• L+ is connected to A±, F+, L−;
• M+ is connected to A+, B+,K+, P−;
• P+ is connected to D+, N+, U+,M−;
• Q+ is connected to C+, G+, O+, Q−.

Six vertices (H±, N±, R±) have valence 3

• H+ is connected to X,G+, J+;
• N+ is connected to A+, J+, P+;
• R+ is connected to F+, O+,K−.

Eight vertices (I±, S±, T±, U±) have valence 2

• I+ is connected to X,F+;
• S+ is connected to J+, O+;
• T+ is connected to F+, J+;
• U+ is connected to O+, P+.

The default of the diagram is 99.
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23.4. Up to height 4. There are 44 pure cycles of each type and height 1. Each has
length 7. Therefore there are 264 vertices with Ht = 2, Hb = 4 and 264 vertices with
Ht = 4, Hb = 2. For each ` = 1, 2, 3, 4, 5, 6, there are 44 pure cycles of each type, height
3, length `. Therefore there are 660 vertices with Ht = H = 4, and 660 vertices with
Hb = H = 4.

In view of the default of Γ(D), there are 198 vertices with Hb = Ht = 4, 462 with
Hb = 4, Ht = 6 and 462 with Ht = 4, Hb = 6.

23.5. Cycles of height 5. Among the 462 vertices V with Hb = 4, Ht = 6,

• the length of the top cycle (of height 5) through V is equal to 1 in 160 cases;
• the length of the top cycle (of height 5) through V is equal to 2 in 116 cases;
• the length of the top cycle (of height 5) through V is equal to 3 in 92 cases;
• the length of the top cycle (of height 5) through V is equal to 4 in 60 cases;
• the length of the top cycle (of height 5) through V is equal to 5 in 34 cases.

There are 96 pure cycles of top type, height 5, length 2. 20 have two vertices of height
4. The other 76 have a vertex of height 4 and a vertex of height 6. Denoting by C the cycle
of bottom type through this vertex

• the length of C is equal to 1 in 46 cases;
• the length of C is equal to 2 in 22 cases;
• the length of C is equal to 3 in 7 cases;
• the length of C is equal to 4 in 1 case.

There are 59 pure cycles of top type, height 5, length 3.

• 9 have three vertices of height 4;
• 15 have two vertices of height 4 and one vertex of height 6;
• 35 have one vertex of height 4 and two vertices of height 6.

There are 32 pure cycles of top type, height 5, length 4.

• 2 have four vertices of height 4;
• 6 have three vertices of height 4 and one vertex of height 6;
• 10 have two vertices of height 4 and two vertices of height 6;
• 14 have one vertex of height 4 and three vertices of height 6.

There are 16 pure cycles of top type, height 5, length 5.

• 1 have five vertices of height 4;
• 1 have four vertices of height 4 and one vertex of height 6;
• 3 have three vertices of height 4 and two vertices of height 6;
• 5 have two vertex of height 4 and three vertices of height 6:
• 6 have one vertex of height 4 and four vertices of height 6.

Summing up, there are 275 vertices with Ht = H = 6. Denoting by ` the length of the
bottom cycle through these vertices

• ` = 1 in 131 cases;
• ` = 2 in 75 cases;
• ` = 3 in 49 cases;
• ` = 4 in 20 cases;

23.6. Cycles of height 7. When ` = 1, the bottom cycle has height 7. When ` > 1, the
height may be equal to 7 or 5.
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There are 40 vertices with Ht = Hb = 6, 235 with Ht = 6, Hb = 8, and 235 with
Hb = 6, Ht = 8. Among the vertices V with Ht = 6, Hb = 8, the length of the bottom
cycle of height 7 through V is equal to

• 1 in 131 cases;
• 2 in 59 cases;
• 3 in 33 cases;
• 4 in 12 cases;

There are 45 cycles of bottom type, height 7, length 2. Among these cycles

• 14 have two vertices of height 6;
• 26 have one vertex of height 6 and one vertex of height 8, with the top cycle

through this last vertex of length 1 (hence height 9);
• 4 have one vertex of height 6 and one vertex of height 8, with the top cycle through

this last vertex of length > 1, height 9;
• 1 have one vertex of height 6 and one vertex of height 8, with the top cycle through

this last vertex of height 7; this vertex has thus Ht = Hb = 8.

There are 16 cycles of bottom type, height 7, length 3. Among these cycles

• 5 have three vertices of height 6;
• 7 have two vertices of height 6 and one vertex of height 8 with the top cycle

through this last vertex of length 1 (hence height 9);
• 4 have one vertex of height 6 and two vertices of height 8. In all cases, the top

cycle through one of the two vertices of height 8 has length 1. In two cases, the
top cycle through the other vertex of height 8 has length 2, with the new vertex of
height 10 but inessential. In the other two cases, the top cycle through the other
vertex of height 8 has length 3, height 9.

There are 6 cycles of bottom type, height 7, length 4. Among these cycles

• 2 have three vertices of height 6 and one vertex of height 8;
• 2 have two vertices of height 6 and two vertices of height 8;
• 2 have one vertex of height 6 and three vertices of height 8.

There appears to be 8 cycles of height 9, top type and length > 1

• Three of them have length 2 and contain one vertex of height 8 and one inessential
vertex of height 10. The vertex of height 8 is linked to P+ in one case, to E−/P−

in the second case, to T+ in the third case. The corresponding inessential vertices
are (

−∞ −1 +∞ 3 1 2 −2 −3
+∞ −∞ 3 2 −1 −3 1 −2

)
,

(
−∞ −3 −2 +∞ 3 1 2 −1
+∞ −∞ 1 −2 −3 −1 3 2

)
,

(
−∞ 1 +∞ 3 2 −3 −2 −1
+∞ −∞ 2 1 −3 −1 3 −2

)
.

• Three other cycles have length 2 and contain two vertices of height 8. These
cycles are the middle cycles of monotonous chains linking G− to H+/S+ (for
one cycle), T− to R−/U− (for the second cycle) and R− to S−. The vertices of
height 8 on the G− (resp. T−, resp. R−) side are
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(
−∞ 1 +∞ 3 2 −2 −1 −3
+∞ −∞ 2 −1 1 −3 3 −2

)
,(

−∞ −2 +∞ 3 1 2 −1 −3
+∞ −∞ −1 1 −2 −3 3 2

)
,(

−∞ −2 +∞ 3 −3 1 −1 2
+∞ −∞ −1 −2 −3 2 3 1

)
.

• One cycle has length 3 and contains two vertices of height 8 (linked to S−, T−)
and one inessential vertex of height 10 equal to(

−∞ −2 +∞ 3 1 −1 2 −3
+∞ −∞ −1 −2 −3 1 3 2

)
.

• The last cycle has length 3 and contains three vertices of height 8 linked respec-
tively to R+, S+, T+. The vertex linked to R+ is(

−∞ 1 +∞ 3 −2 −1 2 −3
+∞ −∞ 2 1 −3 3 −1 −2

)
.


