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This is a seasonal mode, fecundity being 1-periodic in time.
We call A0 the maturation age, A1 the maximal age and take the survival rate at age a

to be
S(a) = 1− a

A1

The mature population N(t) is

N(t) =

∫ A1

A0

S(a)n(t− a) da

where the number n(t)∆t of births between t and t+ ∆t is given by

n(t) =

∫ A1

A0

S(a)n(t− a)m(N(t), t) da

The fecundity rate m(N, t) will be assumed to have the following form

m(N, t) = mγ(N)m̃ρ(t)m0

where

mγ(N) =

{
1 for N 6 1

N−γ for N > 1
(γ > 0)

and

m̃ρ(t) =

{
0 for 0 < t < ρ mod 1
1 for ρ 6 t 6 1 mod 1

There are thus five parameters A0, A1, γ, ρ, m0 in the model.
The exponent γ expresses how strongly fecundity depends on density above the thresh-

old Ncr = 1.
The parameter m0 is fecundity in the summer at zero density.
The parameter ρ is the seasonality parameter. When ρ = 0 we have the unseasonal

model.
Because of the special form of the fecundity rate, we have just one equation

n(t) = m(N(t), t)N(t)

⇒ N(t) =

∫ A1

A0

m0S(a)N(t− a)mγ(N(t− a))m̃ρ(t− a) da

The population has been scaled so that the cutoff level is Ncr = 1.

0The original manuscript was converted into ‘tex’ by Carlos Matheus. Up to some minor modifications, this
article is faithful to the original text.

Date: October 1997.
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It makes also sense to scale differently the population, replacing the parameter m0 by a
parameter Ncr: one now takes

m(N̂ , t) = m̂γ(N̂)m̃ρ(t) (no m0!)

with now

m̂γ(N̂) =

{
N−γcr for N̂ 6 Ncr
N̂−γ for N̂ > Ncr

The equation for N̂ becomes

N̂(t) =

∫ A1

A0

S(a)N̂(t− a)m̂γ(N̂(t− a))m̃ρ(t− a)da

The relation between N and N̂ is

m0 = N−γcr , N = N−1cr N̂ , N̂ = m
−1/γ
0 N

The second scaling (N̂ ) is more useful when discussing equilibria.

2. EQUILIBRIUM IN THE UNSEASONAL MODEL

In order to have a non trivial equilibrium when ρ = 0, we must have∫ A1

A0

S(a) da =
A1

2
(1− A0

A1
)2 > N+

cr
γ

= m−10 ,

a condition that we will always assume: withA1 ∼ 2,A0 ∼ 0.1, this amounts tom0 & 1.1.
Then, the equilibrium is given by

N̂0 = [
A1

2
(1− A0

A1
)2]1/γ > Ncr

It does not depend on Ncr. We can actually make the following observation:

If, for a given cutoff level N0
cr, we have a solution N̂(t), t ∈ R, with

N̂(t) > N0
cr for all t

then N̂(t) will also be a solution for all cutoff levels Ncr < N0
cr.

In particular, the cut-off level does not enter in the discussion of the stability of the
equilibrium.

For solutions N̂(t) above cut-off level, we have just

N̂(t) =

∫ A1

A0

S(a)N̂1−γ(t− a) da

Writing N̂(t) = N̂0 + ∆̂N(t) and keeping only first-order terms gives

∆̂N(t) = (

∫ A1

A0

S(a)N̂−γ0 ∆̂N(t− a) da)(1− γ)

or

∆̂N(t) =
(1− γ)

A1

2 (1−A0/A1)2

∫ A1

A0

S(a)∆̂N(t− a) da

The eigenvalues λ (∆̂N(t) = ∆Ne+λt) are given by

F (λ) =

∫ A1

A0

S(a)e−aλ da =
A1(1−A0/A1)2

2(1− γ)
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Observe that, if Re λ > 0 (⇒ |e−aλ| 6 1) we have

|
∫ A1

A0

S(a)e−aλ da| 6
∫ A1

A0

S(a) da =
A1

2
(1−A0/A1)2

and therefore the equilibrium is stable as long as

| 1

1− γ
| > 1 ⇐⇒ 0 < γ < 2

One can compute F :

F (λ) = (
1

λ
(1− A0

A1
)− 1

λ2A1
)e−A0λ +

1

λ2A1
e−A1λ

When λ = −iu, this gives

F (−iu) = (iu−1(1− A0

A1
) +

1

u2A1
)(cosA0u+ i sinA0u)

− 1

u2A1
(cosA1u+ i sinA1u)

The number of unstable directions, i.e. the number of solutions ofF (λ) = A1(1−A0/A1)
2

2(1−γ)
in the half plane Re λ > 0, is equal to the number of times that F (−iu) turns around
A1(1−A0/A1)

2

2(1−γ) (< 0) as u goes from −∞ to +∞ (we have F (−iu)→ 0 as |u| → +∞).
The imaginary part of F (−iu) is

Im F (−iu) = u−1(1− A0

A1
) cosA0u+ u−2A−11 (sinA0u− sinA1u)

We have F (0) = A1

2 (1− A0

A1
)2

I suspect (and this could be checked numerically if needed, but there is no urgency) that
for every integer k > 0, there is exactly one value uk near (π2 + kπ)A−10 for which

Im F (−iuk) = 0,

and that the uk give all positive roots of Im F (−iu) = 0; the negative roots are then the
−uk, k > 0.

This is certainly true if k is large enough: if we look for the roots of

f(u) =
A1uIm F (−iu)

A1 −A0
= cosA0u+

1

u(A1 −A0)
(sinA0u− sinA1u)

which lie between kπA−10 and (k + 1)πA−10 , we have

| 1

u(A1 −A0)
(sinA0u− sinA1u)| 6 2A0

kπ(A1 −A0)

hence | cosA0u| 6 2A0

kπ(A1−A0)
.

On the other hand

(uf(u))′ = −A0u sinA0u+ cosA0u

+
1

A1 −A0
(A0 cosA0u−A1 cosA1u)

where

| cosA0u+
1

(A1 −A0)
(A0 cosA0u−A1 cosA1u)| 6 2A1

A1 −A0
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and, if f(u) = 0

| sinA0u| >

√
1− 4A2

0

k2π2(A1 −A0)2

therefore uf(u) will be monotone in the interval where | cosA0u| 6 2A0

kπ(A1−A0)
as soon

as

(
π

2
+ kπ)

√
1− 4A2

0

k2π2(A1 −A0)2
>

2A1

A1 −A0
.

Taking k > 1, we are ok as long as

3π

2

√
1− 4A2

0

π2(A1 −A0)2
>

2A1

A1 −A0

or

4A2
1 + 9A2

0 6
9π2

4
(A1 −A0)2

which is perfectly safe for reasonable values of A0, A1.
The case k = 0 must be investigated directly, but still looks ok for A0 = 0.1, A1 = 2.
Assuming the above to be true, we note that Re F (−iu) is equal to

Re F (−iu) = −u−1(1− A0

A1
) sinA0u+

1

u2A1
(cosA0u− cosA1u)

and it is not difficult to check that Re F (−iuk) has the sign of − sinA0uk, i.e. is negative
for even k and positive for odd k.

Thus, F (−iu) behaves like this

The number of turns mentioned above is twice (because of u < 0) the number of inte-
gers k with

F (−iu2k) <
A1(1−A0/A1)2

2(1− γ)

(the sequence F (−iu2k) increases to 0). Therefore, the equilibrium is stable if and only if

γ < 1 +
A1(1−A0/A1)2

2|F (−iu0)|
(Exercise: compute F (−iu0) [for some values of A0] and the corresponding values of

γ).
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3. GENERAL PROPERTIES OF THE DYNAMICS

3.1. The unseasonal case. A reasonable (but not unique) choice for the phase space is the
space of continuous functions N̂(t), taking some positive values, defined on [−A1, 0] and
satisfying

N̂(0) =

∫ A1

A0

S(a)N̂(−a)m̂γ(N̂(−a)) da

Call this space Y . It is also reasonable to consider the space Ỹ of positive continuous
functions defined on (−∞, 0] which satisfy

N̂(t) =

∫ A1

A0

S(a)N̂(t− a)m̂γ(N̂(t− a)) da, for all t 6 0.

In both cases, the relations define a closed subspace of the space of continuous func-
tions.

In the unseasonal case, the dynamics define a semi-group of transformations (T t)t>0

from Y to itself

T t1 ◦ T t2 = T t1+t2 , t1, t2 > 0.

Because A0 > 0, we can actually compute T t for small t: for 0 6 s 6 A0, 0 > t >
−A1

T sN̂(t)

{
= N̂(t+ s) if −A1 6 t 6 −s
=
∫ A1

A0
S(a)N̂(t+ s− a)m̂γ(N̂(t+ s− a)) da if − s 6 t 6 0

The dynamics on Y are not invertible: one cannot define T t for t < 0.
On the other hand, one can define also T̃ t : Ỹ → Ỹ for t > 0 by the same formula;

these dynamics are invertible: for s 6 0

T̃ sN̂(t) = N̂(t+ s), ∀t 6 0

Finally one has a “forget” map: Ỹ
π→ Y (restricting N to [−1, 0]), which gives a

commutative diagram

Ỹ
T̃ s

//

π

��

Ỹ

π

��
Y

T s
// Y

The map π is not surjective: actually most elements of Y cannot have an infinite past.

Boundedness of solutions. If γ > 1, we have N̂m̂γ(N̂) 6 N1−γ
cr for all N̂ , hence

N̂(t) 6
A1

2
(1− A0

A1
)2N1−γ

cr = N̂max

We will not be interested in the case γ < 1. (The bound is different in this case)
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Differentiability of solutions. We can rewrite the equation as

N̂(t) =

∫ t−A0

t−A1

S(t− u)N̂(u)m̂γ(N̂(u)) du

which gives

dN̂

dt
(t) = (1− A0

A1
)N̂(t−A0)m̂γ(N̂(t−A0))− 1

A1

∫ t−A0

t−A1

N̂(u)m̂γ(N̂(u)) du

which gives, for γ > 1

|dN̂
dt

(t)| 6 (1− A0

A1
)N1−γ

cr

The formula also shows that solutions become smoother and smoother as time runs.
In particular, every function in Ỹ is actually infinitely differentiable, and we could com-

pute bounds for all derivatives.

I will now give an idea of a more involved result: that active population will always, after
some transition period, stay above a determined level independent of the initial conditions.

Consider for simplicity a solution N(t), t 6 0, with infinite past, i.e. an element of Ỹ .
I will prove that if N(0) is small enough, then N(t)→ 0 as t→ −∞ exponentially fast.

To prove this needs several steps. It is easier for this result to consider the first scaling,
with cutoff at 1 (N = N̂/Ncr).

1 The estimates on the last page read

N(t) 6 Nmax = m0
A1

2
(1−A0/A1)2

|dN
dt

(t)| 6 m0(1−A0/A1)

They easily imply that there exists N1 such that

N(t0) 6 N1 ⇒ N(t) 6 1 for all t ∈ [t0 −A1, t0 −A0]

Also, if N(t0) 6 N1, we will then have

N(t0) = m0

∫ A1

A0

N(t0 − a)S(a) da,

where m0

∫ A1

A0
S(a) da = m0

A1

2 (1 − A0/A1)2 = θ > 1, therefore there exists t1 ∈
[t0 −A1, t0 −A0] with N(t1) 6 θ−1N(t0)

2 Therefore, if N(0) 6 N1, there exists a decreasing sequence

t0 = 0 > t1 > t2 > . . .

with
A1 > ti − ti+1 > A0

and
N(ti) 6 θ

−iN1

3 Assume that N(t) 6 N1; then

N(t) = m0

∫ A1

A0

N(t− a)S(a) da
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Let N the maximum value of N(t− a), A0 6 a 6 A1. It is clear that the integral must be
bigger or equal to the value it takes if we have

N(t−A1) = N, N(t−A1 + s) = N −m0(1−A0/A1)s

for 0 6 s 6 Nm−10 (1−A0/A1)−1, N(t−A1 + s) = 0 if Nm−10 (1−A0/A1)−1 6 s 6
A1 −A0. (Recall that |dNdt | 6 m0(1−A0/A1)). In this case, the integral is equal to

m0

∫ A1

A1−Nm−1
0 (1−A0/A1)−1

(1− a

A1
)(N −m0(1−A0/A1)(A1 − a)) da

= m0

∫ Nm−1
0 (1−A0/A1)

−1

0

s

A1
(N −m0(1−A0/A1)s) ds

= m−10 A−11 (1−A0/A1)−2
∫ N

0

u(N − u) du

=
1

6
N

3
m−10 A−11 (1−A0/A1)−2

We have therefore

N(t) >
1

6
N

3
m−10 A−11 (1−A0/A1)−2

or

max
t−A16s6t−A0

N(s) 6 [6m0A1(1−A0/A1)2]1/3(N(t))1/3 = C(N(t))1/3.

4 If N(t) 6 (N1/C)3 and N(t) 6 N1, we can apply this twice, because we get
max

t−A16s6t−A0

N(s) 6 N1. We obtain

max
t−2A16s6t−2A0

N(s) 6 C( max
t−A16s6t−A0

N(s))1/3 6 C4/3N(t)1/9

5 Let finally t� 0. For reasonable values of A0, A1, the interval [t+ 2A0, t+ 2A1]

has length > A1 (if A1 > 2A0) and thus, must contain one of the points ti of 2 .
One has ti > −iA1 ⇒ t > −(i+ 2)A1 ⇒ i > |t|

A1
− 2. Therefore,

N(ti) 6 N1θ
2θ−|t|/A1

and we deduce from 4 that

N(t) 6 C4/3N
1/9
1 θ2/9θ−|t|/9A1

showing the desired result.

Remark 3.1. with more work, one can compute the exact exponential rate; N(t), for
t→ −∞ is of order eλt where

m0

∫ A1

A0

e−λaS(a) da = 1, λ > 0.
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3.2. The seasonal case. A standard procedure is to view the time-periodic evolution equa-
tion as an autonomous equation, taking time into the phase space.

Thus, our phase space now should1 be Y × R/Z, where Y is the same space than2 in
page 6 . The semi-group is now as follows (for 0 6 s 6 A0)

T s(N̂ , t) = (N̂s, t+ s), where t+ s is taken mod Z

and {
N̂s(u) = N̂(u+ s) if −A1 6 u 6 −s
N̂s(u) =

∫ A1

A0
S(a)N̂(u+ s− a)m̂γ(N̂(u+ s− a))m̃ρ(t+ u+ s− a) da

To understand the long-term behaviour of solutions, it is enough actually to see how
trajectories come back to Y × {0}.

[This is a general method; in our case, even more is true do the special nature of the
evolution equation: given an initial condition (N̂0, 0) in Y ×{0}, if we know T k(N̂0, 0) =

(N̂k, 0) for all positive integers we know completely the trajectory because N̂k determines
the solution between time k −A1 and k, and it is reasonable to assume A1 > 1]

Therefore, our basic dynamical object is the map T = T 1 : Y × {0} → Y × {0}.
(There is nothing special with time 0. We could as well consider any t0 ∈ R/Z and
consider T : Y × {t0} → Y × {t0}; this map is conjugated to the preceding one)

As in the unseasonal case, we can also consider the space Ỹ and the invertible map

T : Ỹ → Ỹ

As before, solutions are bounded (same proof)
Because we have taken a discontinuous m̃ρ, solutions will be Lipschitz but not C1;

indeed

dN̂

dt
(t) = (1−A0

A1
)N̂(t−A0)m̂γ(N̂(t−A0))m̃ρ(t−A0)− 1

A1

∫ t−A0

t−A1

N̂(u)m̂γ(N̂(u))m̃ρ(u) du

with discontinuities when t ≡ A0 or A0 + ρ mod Z.
(So solutions are C1 piecewise, with two “angles” in each year).
The more difficult result, that solutions stay above a certain level provided fecundity at

small density is high enough, is discussed below, together with equilibria.

4. EQUILIBRIUM IN THE SEASONAL CASE

4.1. Recall that in the unseasonal case, one gets a nontrivial equilibrium (= constant non
zero mature population) as soon as

A1

2
(1− A0

A1
)2 > Nγ

cr = m−10 ,

i.e. fecundity at small density is high enough. [When on the opposite one has A1

2 (1 −
A0/A1)2 < m−10 , all solutions collapse to zero exponentially fast.]

In the seasonal case, an equilibrium should be interpreted as a fixed point of the map T
(distinct from the trivial fixed point 0).

1This is not quite true, but this mistake doesn’t affect the conclusions: see the subsection “Visualizing the
attractor(s): the N(t), N(t+1), N(t+2) representation” of Jean-Christophe Yoccoz’s subsequent notes Informal
commentaries on the numerical investigation of the “toy model” [H. Birkeland – J.-C.Y. – Orsay – Sept. 98]
(available at the webpage dedicated to his mathematical archives, for instance).

2I.e., the beginning of Subsection 3.1.
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To see under which circumstances one gets such an equilibrium, let us consider the
evolution equation (in the first scaling) at low density:

N(t) = m0

∫ A1

A0

S(a)N(t− a)m̃ρ(t− a) da,

which is a linear equation. Now, a “Perron–Frobenius-like” theorem tells us the following:
there exists a unique (up to scaling) 1-periodic positive function Ñ , and a unique positive
real number Λ = Λ(ρ) such that

Ñ(t) = Λ

∫ A1

A0

S(a)Ñ(t− a)m̃ρ(t− a) da.

The discussion now runs as follows
• if m0Λ < 1, all solutions will collapse exponentially fast to zero: no non trivial

equilibrium (or anything else)
• if m0Λ > 1, it is not unreasonable to expect a non trivial equilibrium (for the non

linear equation of course).
I will try to prove below that such a non trivial equilibrium exists.
The question of the uniqueness of such a non trivial equilibrium seems far from obvious.
To prove the existence of a non trivial equilibrium, one considers the map S defined by

S(N)(t) = m0

∫ A1

A0

S(a)N(t− a)mγ(N(t− a))m̃ρ(t− a) da

where N is a positive 1-periodic continuous function and S(N) has the same properties.
We want to find a fixed point of S.

We would like to apply the so-called “Leray–Schauder–Tichonoff theorem” which says
the following:

If, in a topological vector spaceE, we have a convex compact subsetK and a continuous
map S sending K to K, then S has at least one fixed point in K.

The problem here is to take the right E and K.
There is no problem with E: E is just the space of continuous 1-periodic function,

which is a Banach space with the usual sup-norm.
For K, I want to take a subset of the form K(ε0, Nmax, L) with a convenient choice of

parameters ε0, Nmax, L, and defined as follows.

We scale the function Ñ at the end3 of page 11 in order to have (for instance)

max
06t61

Ñ(t) = 1.

Then K(ε,Nmax, L) is the set of continuous 1-periodic functions (i.e. elements of E)
which moreover satisfy

(i) for all t ε0Ñ(t) 6 N(t) 6 Nmax

(ii) for all t, t′ |N(t)−N(t′)| 6 L|t− t′|.
This is easily seen to be a compact convex subset of E
What remains to be done is to show that we can select ε0, Nmax, L such that S sends

K into K.
We assume as before γ > 1. Then, whatever N , we have

N(t− a)mγ(N(t− a)) 6 1

3I.e., 21 lines above
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and therefore

S(N)(t) 6 m0

∫ A1

A0

S(a)m̃ρ(t− a) da 6 m0
A1

2
(1− A0

A1
)2

Therefore, it is reasonable to take

Nmax = m0
A1

2
(1− A0

A1
)2

Next comes the choice of L. One has

S(N)(t) = m0

∫ t−A0

t−A1

S(t− u)N(u)mγ(N(u))m̃ρ(u) du

hence
dS(N)

dt
(t) = (1− A0

A1
)m0N(t−A0)mγ(N(t−A0))m̃ρ(t−A0)

− m0

A1

∫ t−A0

t−A1

N(u)mγ(N(u))m̃ρ(u) du

(with discontinuities when t = A0 or A0 + ρ mod Z) giving again

|dS(N)

dt
(t)| 6 (1− A0

A1
)m0

We will take

L = (1− A0

A1
)m0

So far so good. There remains to choose conveniently ε0.
We will prove that any ε0 small enough will do.
Let N an element of K(ε0, Nmax, L). We distinguish two cases

a) for ρ 6 t 6 1, we have not only (i) but

ε0Ñ(t) 6 N(t) 6 1.

Then, mγ(N(t)) = 1 whenever m̃ρ(t) 6= 0. Therefore

S(N)(t) = m0

∫ A1

A0

S(a)N(t− a)m̃ρ(t− a) da

> m0ε0

∫ A1

A0

S(a)Ñ(t− a)m̃ρ(t− a) da = m0ε0ΛÑ(t)

> ε0Ñ(t)

so any ε0 will do in this case.
b) there exists t0 ∈ [ρ, 1] with N(t0) > 1.

We assume A1 −A0 > 1 (it seems reasonable)
Because of (ii), we can find an interval J containing t0, contained in [ρ, 1], of

length

` = min(
1

2L
,A1 −A0 − 1, 1− ρ)

such that
1

2
6 N(t) 6 Nmax for all t ∈ J.
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For such t we will have

N(t)mγ(N(t)) > N1−γ
max (if N(t) > 1)

> 1/2 (if 1/2 6 N(t) 6 1)

Now, when we write

S(N)(t) =

∫ t−A0

t−A1

m0S(t− u)N(u)mγ(N(u))m̃ρ(u) du

we can find an integer k ∈ Z such that J + k is contained in [t − A1, t − A0]
(because the length ` of J is smaller A1 −A0 − 1); on J + k we will have

m̃ρ(u) = 1

N(u)mγ(N(u)) > min(
1

2
, N1−γ

max ).

Therefore

S(N)(t) > m0[

∫
J+k

S(t− u) du] min(
1

2
, N1−γ

max )

> m0
`2

2A1
min(

1

2
, N1−γ

max ) = ε0 > ε0Ñ(t)

We have just defined ε0 so that the proof is complete.

Remark 4.1. When m0Λ > 1, a non trivial equilibrium N(t) cannot satisfy

N(t) 6 1 for all t.

(Otherwise N would be proportional to Ñ and we would have m0Λ = 1).
Actually we even cannot have

N(t) 6 1 for all t ∈ [ρ, 1]

(same argument).

4.2. The linearized equation at an equilibrium. Let

N0(t) = m0

∫ A1

A0

S(a)N0(t− a)mγ(N0(t− a))m̃ρ(t− a) da

be an equilibrium, i.e. a 1-periodic solution of the evolution equation.
Writing N = N0 + ∆N and keeping only first order terms, we get the linearized

equation

∆N(t) = m0

∫ A1

A0
S(a)∆N(t− a)m̃ρ(t− a)χ(t− a) da

where

χ(t− a) =

{
1 if N0(t− a) 6 1

(1− γ)N−γ0 (t− a) if N0(t− a) > 1

(This is discontinuous but should not be too troublesome.)
Looking for eigenvalues for the linearized equation, we write

∆N(t) = eλt∆N(t), λ ∈ C

where now ∆N is a 1-periodic function. This gives

∆N(t) = m0

∫ A1

A0

S(a)∆N(t− a)e−λam̃ρ(t− a)χ(t− a) da.
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Let us define the linear operator Uλ, acting on continuous 1-periodic functions, by the
right-hand side of the last formula.

THEN

1) We have, k ∈ Z:

Uλ(e2πikt∆N(t)) = e2πiktUλ+2πik(∆N(t))

thus Uλ and Uλ+2πik are conjugated.
2) Let θ ∈ C∗, and λ ∈ C such that eλ = θ

Then θ is an eigenvalue of the evolution map T of 3.2, at equilibrium N0, if
and only if

id− Uλ is non invertible

(in fact has a non trivial kernel)
By the first point, this does not depend on the choice of λ, but only on θ.

3) If id− Uλ is invertible for all λ with Re λ > 0, the equilibrium N0 is stable
4) If id− U0 is invertible, the equilibrium N0 is non degenerate. In this case we can

use the implicit function theorem: if we perturb slightly the values of m0, ρ, γ, we
still get for this new values of the parameters a unique equilibrium close to N0.

4.3. The case 0 < γ < 2. We assume 0 < γ < 2. I want to give some indication of the
proof of the following results.

a) the eigenvalue Λ = Λ(ρ) of 4.1, page 11 , is decreasing with ρ. Therefore the
threshold level Λ−1 for fecundity m0 is increasing with ρ

b) Let 0 6 ρ < 1, m0Λ(ρ) > 1. Then there exists a unique non trivial equilibrium
and it is stable.

Proof of a). this is easy (and does not use 0 < γ < 2). For ρ′ > ρ, we have m̃ρ′ 6 m̃ρ and
the assertion follows from general considerations on “Perron–Frobenius like” operators.

�

Proof of b) (only a rough sketch). The main point is to establish that any non trivial should
be stable.

Then we are able to show uniqueness by letting the seasonality ρ decrease to 0, follow-
ing the corresponding equilibrium, and using uniqueness of the unseasonal case. (When
ρ decreases to zero, the threshold Λ−1(ρ) will decrease and therefore we stay above it if
we started above [we do not change m0]. For ρ = 0, we get back the threshold of the
unseasonal case Λ−1 = A1

2 (1−A0/A1)2)
Let us now show the stability of equilibrium N0 (assuming 0 < γ < 2 and m0Λ(ρ) >

1).
We want to show that, if Re λ > 0, the operator id−Uλ is invertible. To do this we will

show that Uλ is a contraction.
We first observe that (as |e−λa| 6 1 if Re λ > 0, a > 0)

|Uλ(∆N(t))| 6 m0

∫ A1

A0

S(a)m̃ρ(t− a)|χ(t− a)| |∆N(t− a)| da.

We define

Ũ0(∆N)(t) = m0

∫ A1

A0

S(a)m̃ρ(t− a)|χ(t− a)|∆N(t− a) da
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which is a linear operator of “Perron–Frobenius type”. It has, up to scaling, a unique
positive eigenvector ∆N0. Let us call 0 < Λ̃ the corresponding eigenvalue. If Λ̃ < 1, then
Ũ0 will be a contraction, and the inequality above will show that Uλ is also a contraction.

But recall that

|χ(t− a)| =
{

1 if N0(t− a) 6 1

|1− γ|N−γ0 (t− a) if N0(t− a) > 1

which, as 0 < γ < 2, is smaller than

mγ(N0(t− a)) =

{
1 if N0(t− a) 6 1

N−γ0 (t− a) if N0(t− a) > 1

When we replace in the definition of Ũ0 the function |χ| by the larger functionmγ ◦N0,
the eigenvalue (associated to the unique positive eigenvector) will increase. But after doing
this, we know the eigenvector: it is the equilibrium N0, and the eigenvalue is equal to 1.
Therefore the eigenvalue Λ̃ is < 1, which allows to conclude. �

Remark 4.2. There are a number of technical points to be taken care of in this sketch of
proof. I don’t want to address them now.

4.4. “Computing” eigenvalues of equilibria. If N0 is an equilibrium, the eigenvalues of
the linearized equations associated to it are the complex numbers θ ∈ C∗ such that, with
eλ = θ, the linear operator id− Uλ of page4 16 is non invertible.

Thus, formally, we want to solve

det(id− Uλ) = 0,

seeing the left hand side as a function of θ = eλ [because Uλ+2πi is conjugated to Uλ, the
function λ 7→ det(id− Uλ) will be 2πi-periodic, and thus can be considered as a function
of θ].

Because Uλ acts on the infinite dimensional Banach space of continuous 1-periodic
functions, one has to be careful considering determinants.

Nevertheless, this can be done, the heuristics being the following

a) Assume first that U is a linear operator, acting on a finite-dimensional vector space
and having eigenvalues θ1, . . . , θd (counted with multiplicities).

We have, for small z ∈ C

det(1− zU) =

d∏
1

(1− θiz)

⇒ log det(1− zU) =

d∑
1

log(1− θiz)

= −
d∑
1

∑
m>1

θmi z
m

m

= −
∑
m>1

Trace(Um)
zm

m

4I.e., page 12.
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therefore

det(1− zU) = exp(−
∑
m>1

Trace(Um)
zm

m
)

The idea is to use this formula as a definition of the determinant when now U
acts on an infinite-dimensional vector space, provided we can define Tr(Um) and
the series converge (for small z).

If everything is ok, we get for det(1− zU) an entire function (holomorphic in
the whole complex plane) whose zeros are the inverses of the eigenvalues of U .

b) Assume that U acts (say) on the space of 1-periodic continuous function on the
circle, and is defined by a kernel u

U(ϕ)(x) =

∫
R/Z

u(x, y)ϕ(y)dy

where u is a continuous function on R/Z× R/Z. Then, U has a trace equal to

Trace(U) =

∫
R/Z

u(x, x) dx

(the “same” formula that in the finite dimensional case)
For iterates, one get

Um(ϕ)(x) =

∫ ∫ ∫
︸ ︷︷ ︸

m

u(x, x1)u(x1, x2) . . . u(xm−1, xm)ϕ(xm) dx1 . . . dxm

with kernel

u(m)(x, y) =

∫ ∫
︸ ︷︷ ︸
m−1

u(x, x1)u(x1, x2) . . . u(xm−1, y) dx1 . . . dxm−1

Which gives

Tr(Um) =

∫ ∫ ∫
︸ ︷︷ ︸

m

u(x0, x1)u(x1, x2) . . . u(xm−1, x0) dx0dx1 . . . dxm−1

Let us come back to our situation. We have5

Uλ(ϕ)(t) = m0

∫ t−A1

t−A0

S(t− u)e−λ(t−u)m̃ρ(u)χ(u)ϕ(u) du

To compute the trace, we first suppress the bounds in the integral: we extend the defini-
tion of S as

S(a) =

{
0 if a 6 A0 or a > A1

(1− a
A1

) if a ∈ [A0, A1]

Then, we can replace
∫ t−A1

t−A0
by
∫ +∞
−∞ .

We next want to replace the integral
∫ +∞
−∞ by an integral on a single period (we take,

say, 0 6 t, u 6 1).

5N.B.: it seems that Jean-Christophe forgot a minus sign here.
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In the formula for Uλ, the functions m̃ρ, χ, ϕ are periodic but S and e−λ(t−u) are not.
We write

Uλ(ϕ)(t) = m0

∫ +∞

−∞
S(t− u)e−λ(t−u)m̃ρ(u)χ(u)ϕ(u) du

= m0

+∞∑
−∞

∫ n+1

n

S(t− u)e−λ(t−u)m̃ρ(u)χ(u)ϕ(u) du

= m0

+∞∑
−∞

∫ 1

0

S(t− u− n)e−λ(t−u−n)m̃ρ(u)χ(u)ϕ(u) du

= m0

∫ 1

0

(
+∞∑
−∞

e−λ(t−u−n)S(t− u− n)

)
m̃ρ(u)χ(u)ϕ(u) du

(If A1 = 2, there are at most two non zero terms in the series!)
We thus can see Uλ has an operator with kernel

kλ(t, u) = m0m̃ρ(u)χ(u)

+∞∑
−∞

e−λ(t−u−n)S(t− u− n)

(with t, u ∈ [0, 1]).
In particular

kλ(t, t) = m0m̃ρ(t)χ(t)

+∞∑
−∞

eλnS(−n)

Taking 1 < A1 6 2, we will have S(−n) = 0 except for n = −1 in which case
S(1) = (1− 1/A1).

We obtain

Tr(Uλ) = m0(1− 1/A1)θ−1
∫

R/Z

m̃ρ(t)χ(t) dt

The formulas for the traces of the Umλ are slightly more complicated.
The kernel for Umλ is given by

k
(m)
λ (t, u) =

∫ ∫
︸ ︷︷ ︸
m−1

kλ(t, t1) . . . kλ(tm−1, u) dt1 . . . dtm−1

We have

kλ(t0, t1) . . . kλ(tm−1, t0) = mm
0 (

m−1∏
0

m̃ρ(ti)χ(ti))Z(t0, . . . , tm−1)

with

Z(t0, . . . , tm−1) =

+∞∑
−∞

+∞∑
−∞

. . .︸ ︷︷ ︸
m

[

m−1∏
0

e−λ(ti−ti+1−ni)S(ti − ti+1 − ni)]

(and we put tm = t0). We have
m−1∏
0

e−λ(ti−ti+1) = e−λ(t0−tm) = 1
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and we reorganize Z as follows

Z(t0, . . . , tm−1) =

+∞∑
n=−∞

θn

 ∑
n0+···+nm−1=n

(

m−1∏
0

S(ti − ti+1 − ni))


For the product in the left hand side to be non zero, we must haveA0 6 ti−ti+1−ni 6 A1

for every i which gives

−mA1 6 n =
∑

ni 6 −mA0.

Therefore Z is a polynomial in θ−1:

Z(t0, . . . , tm−1) =
∑

mA06n6mA1

θ−n

 ∑
n0+···+nm1

=n
A06ti−ti+1+ni6A1

(

m−1∏
0

S(ti − ti+1 + ni))


(One should think of n as a number of years, m as a number of generations, and ti as the
instants of birth of the various generations)

We define, for mA0 6 n 6 mA1

Zm,n(t0, . . . , tm−1) =
∑

n0+···+nm−1=n
A06ti−ti+1+ni6A1

(

m−1∏
0

S(ti − ti+1 + ni))

Zm,n =

∫ ∫ ∫
︸ ︷︷ ︸

m

m−1∏
0

(m̃ρ(ti)χ(ti))Zm,n(t0, . . . , tm−1) dt0 . . . dtm−1

and we will have
Trace(Umλ ) =

∑
mA06n6mA1

θ−nZm,n

Finally, we will obtain

det(id− Uλ) = exp(−
∑
m>1

1

m
Tr(Umλ ))

= exp(−
∑
m>1

∑
mA06n6mA1

1

m
θ−nZm,n)

= exp(−
∑
n>1

θ−nZn)

where
Zn =

∑
n
A1

6m6 n
A0

m−1Zm,n.

I would expect (this needs justification !!) that

a) the power series (in ζ = θ−1)
∑
Znζ

n converges for |ζ| small enough.
b) The holomorphic function exp(−

∑
Znζ

n) extends analytically to an entire func-
tion, defined on all of C.

c) The zeros of this entire function are the inverses of the eigenvalues we are looking
for.
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d) In particular, the eigenvalue with largest modulus, which decides stability, cor-
responds to the zero with smallest modulus, hence to the singularity of

∑
Znζ

n

(log 0 !!) with smallest modulus, given by the radius of convergence of the power
series: if the radius of convergence is > 1, we have a stable equilibrium; other-
wise, an unstable one.


