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Recall that the toy model is given by

(∗) N(t) =

∫ A1

A0

S(a)N(t− a)mρ(t− a)m(N(t− a))da

where t is time and
• N is the active population, with age > A0;
• A1 is the maximal age;
• A0 is the maturation age;
• S is the survival rate; we take S(a) = 1− a

A1
.

• mρ(t) is the seasonal parameter: time is counted in years; with 0 6 ρ 6 1, one

has mρ(t) =

{
0 if 0 6 t 6 ρ
1 if ρ 6 t 6 1

}
mod 1

[ρ is the length of the winter]
• m(N) is the fecundity rate at (active) population N : we take it of the form

m(N) =

{
m0 if N 6 1
m0N

−γ if N > 1

The model thus depends on five parameters A0, A1, ρ, m0, γ. We took always A1 = 2,
and most of the time we took m0 = 50. Our findings suggest (see commentary later) that
it would be worth investigating slightly lower values of m0.

1. UNSEASONAL MODEL: ρ = 0

a We have then an equilibrium (constant solution) at

Neq =

[
m0

A1

2

(
1− A0

A1

)2
]1/γ

provided this quantity is > 1 [it is so for any reasonable value of the parameters]. Defining
[see text October 1997]1

F (λ) =

∫ A1

A0

S(a)e−aλda

=

(
1

λ
(1− A0

A1
)− 1

λ2A1

)
e−A0λ +

1

λ2A1
e−A1λ

0The original manuscript was converted into ‘tex’ by Sylvain Arlot and Carlos Matheus. Up to some minor
modifications, this article is faithful to the original text.

1Here and in what follows, “Oct. 97” is a reference to the text The numerical toy model by Jean-Christophe
Yoccoz (available at the website dedicated to his mathematical archives, for instance).
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the eigenvalues at the equilibrium are the complex numbers λ solutions of

F (λ) =
A1

2

(
1− A0

A1

)2

(1− γ)−1 := cγ

[Observe that provided Neq > 1, the parameter m0 does not enter in the discussion of
the eigenvalues, and in particular of the stability of the equilibrium]. One expects that (for
reasonable values of A0) [see Oct. 1997]:

• the zeroes of the equation

ImF (−iu) = 0, u > 0

(where F (−iu) = u−1(1 − A0

A1
) cosA0u + u−2A−1

1 (sinA0u − sinA1u)) for
u0 < u1 < u2 < . . . with{

Re F (−i u2k) < Re F (−i u2k+2) < 0
Re F (−i u2k+1) > Re F (−i u2k+3) > 0

[this is easily proved for large k; for the first values of k, one needs a direct com-
putation].

We checked that this is true for several significant values of A0.
We also computed the values u0 = u0(A0), u2 = u2(A0), . . . Then we know that

• if γ < 1 + A1

2 (1− A0

A1
)2|F (−iu0)|−1 := γ0(A0) the equilibrium is stable.

• if γ0(A0) < γ < 1 + A1

2 (1− A0

A1
)2|F (−iu2)|−1 := γ1(A0) there are exactly two

(complex conjugate) unstable eigenvalues
• if γk−1(A0) < γ < 1 + A1

2 (1− A0

A1
)2|F (−iu2k)|−1 := γk(A0) there are exactly

2k unstable eigenvalues (k pairs of complex conjugates).
Actually, γ0, γ1, . . . do not depend much onA0; a typical value for γ0 is∼ 6.2, a typical

value for γ1 is ∼ 30.
As γ increase through γ0 (for fixed A0), one expects a Hopf bifurcation (see Appendix

B): an attracting periodic orbit is born at the equilibrium (for γ = γ0) and attracts all
solutions near the equilibrium for γ > γ0 (close to γ0) [except the equilibrium itself].

Remark 1.1. With some easy work, everything in this section could be proved in a com-
pletely rigorous way.

b For γ > γ0(A0) (' 6.2), the equilibrium is no more stable and the attention
switches to the stable periodic orbit born from the equilibrium at γ = γ0.

We followed numerically this periodic orbit for increasing values of γ (A0 being fixed).
Around γ ∼ 8.2, it seems that the periodic orbit loses its stability: the numerical ev-

idence is that we have for some critical value γ′0 of γ a Hopf bifurcation (for a periodic
orbit, see Appendix C) giving rise for γ > γ′0 to quasiperiodic motion; the quasiperiodic
orbits should fill a 2-dimensional torus in∞-dimensional phase space, and we were able
to “vizualize” this torus [cf. representation [N(t), N(t+ 1), N(t+ 2)] explained later on].

Remark 1.2. The mathematical theory of the Hopf bifurcation is easy, but to check rig-
orously that the conditions for it to occur are satisfied in our case would probably require
some painful work.

c For 0 < γ < 2, it is easy to prove that all solutions are attracted by the stable
equilibrium.

For γ < γ0 (' 6.2), this is still true for all solutions near the equilibrium.
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However, we did observe some stable periodic orbits far from the equilibrium for certain
values of γ (∼ 4) with γ0 > γ > 2.

Following these stable periodic orbits for increasing values of γ, they persist till some
rather large value of γ and then disappear.

Both the birth and the death of this “large” periodic orbits could be explained by saddle-
node bifurcations (see Appendix D).

2. THE SEASONAL MODEL: CHAOTIC ATTRACTORS

With four parameters to play with [m0, A0, ρ, γ], a systematic exploration of the pa-
rameter space is hopeless. After some educated guesses, we found two sets of parameter
values which exhibit extremely interesting dynamics in an open region of phase space.

In both cases, the stationary regime seems to be a low-dimensional non-uniformly hy-
perbolic attractor [see Appendix E] but the geometry of the phase space involved seems
to be rather different in one case and the other.

The two sets of parameter values are:

STRANGE ATTRACTOR I
A0 = 0.23 [A1 = 2], m0 = 50, γ = 8, ρ = 0.34

HENON-LIKE ATTRACTOR II
A0 = 0.18 [A1 = 2], m0 = 50, γ = 8.25, ρ = 0.41

[we get something similar with A0 = 0.15]

2.1. VISUALIZING THE ATTRACTOR(S): THE N(t), N(t+ 1), N(t+ 2) REPRE-
SENTATION. First let me correct a slight (unimportant) mistake in [Oct. 97].

In the seasonal model, the phase space is not the product Y × R/Z as stated there:
indeed the condition

⊕t0 : Ñ(0) =

∫ A1

A0

S(a)Ñ(−a)m(Ñ(−a))mρ(t0 − a) da

depends on t0 (mod 1) and defines an hypersurface Yt0 (i.e. codimension 1) of the space
C of continuous functions Ñ on [−A1, 0] taking positive values.

The phase space is
Y ] = {(t, Ñ), t ∈ R/Z, Ñ ∈ Yt}

(it is not quite a product). The dynamics (T s)s>0 are still given by the semigroup law
T s ◦ T s′ = T s+s

′
and

T s(t, Ñ) = (t+ s(mod 1), Ñs)

where, for 0 6 s 6 A0, we have:{
Ñs(−a) = Ñ(s− a) if 0 6 s 6 a 6 A1

Ñs(−a) =
∫ A1

A0
S(b)Ñ(s− a− b)m(Ñ(s− a− b))mρ(t+ s− a− b) db if 0 6 a 6 s

Anyway, we want to look at the map

T 1 : Y0 → Y0

(we could also consider T 1 : Yt0 → Yt0 which gives essentially the “same” dynamics).
As explained in Appendix F, there is a compact subset K0 of Y0 such that

(i) T 1(K0) ⊂ K0

(ii) for any N ∈ Y0, we have T k(N) ⊂ K0 for all large k.
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We then define the attractor

Λ0 =
⋂
n>0

Tn(K0)

with the following properties

(iii) T 1(Λ0) = Λ0; Λ0 is compact;
(iv) for any N ∈ Y0, the distance of T k(N) to Λ0 goes to zero as k goes to∞.

Both Λ0, K0 are compact subsets of the metric space Y0, the distance being the uniform
norm

‖N −N ′‖ = max
−A16s60

|N(s)−N ′(s)|

The good thing with compact sets is that they can be approximated by finite sets: for
any ε > 0, there exist finite ε-dense subsets R, meaning that any point in the compact set
is at distance < ε from a point in R.

Denote by r(ε) the minimal cardinality of such a subset R [for a smooth curve we have
r(ε) ∼ ε−1, for a smooth surface r(ε) ∼ ε−2, . . . ]; the fractal dimension of the compact
set is

lim
log r(ε)

log ε−1

i.e. r(ε) ∼ ε−dim [the limit does not always exist; then one takes lim sup...]
Now the compact set K0 is infinite dimensional but on general principles (not explained

here) the attractor Λ0 should have finite fractal dimension D0; then one should be able to
vizualize it in the following way, using the following

Principle 1. Let E a (perhaps∞-dimensional) vector space and Λ ⊂ E a compact subset
of finite fractal dimension D. Let k be an integer > 2D. Then, for the “general” linear
projection p : E → Rk, the map p is one-to-one on Λ and is a homeomorphism onto its
image p(Λ) ⊂ Rk.

In our caseE is a space of continuous functionsN on [−A1, 0]; the simplest projections
that one can think of have the type

N → (N(s1), N(s2), N(s3), . . . , N(sk)) ∈ Rk

where −A1 6 s1 < s2 < · · · < sk 6 0 are any fixed values. To get an image on the
screen, we took k = 3, s1 = −A1 = −2, s2 = −1, s3 = 0.

Let N ∈ Y0 be an initial condition; the set of limit points of T k(N), as k → +∞,
is called the ω-limit set of N , denoted by ω(N); it is compact, invariant under T , and
contained in Λ0 according to (iv) above.

Being slightly optmistic, one could hope (expect?) that the full attractor can actually be
written as a disjoint finite union

Λ0 = ω(N1) t ω(N2) t · · · t ω(Nl)

for some appropriate initial conditions N1, . . . , Nl.
Anyway, it is important to understand ω(N) and the dynamics T 1 : ω(N)→ ω(N).

Remark 2.1. For the quasiperiodic motion in the unseasonal case, we expect a 2-dimensional
torus in∞-dimensional phase case; to get an injective projection requires a priori k = 5.
With k = 3 (as we did), what we have seen looks indeed like a torus self-intersecting along
some lines . . . [as it should]
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In the seasonal case, for the two sets of parameter values mentioned above, we were
able to find initial conditions N such that, apparently

1 < dim(ω(N)) < 1.5,

meaning that k = 3 should give an injective projection allowing to vizualize p(ω(N)) ⊂
R3.

What we did in practice, starting with an appropriate initial condition N on [−A1, 0],
was

1) to compute the corresponding solution N(t), 0 6 t 6 tmax with tmax = 1000
years.

2) to plot, for 50 6 n 6 1000, n integer, the points

Xn = (N(n− 2), N(n− 1), N(n)) ∈ R3

(which are precisely, with p(N) = (N(−2), N(−1), N(0)), the points p(Tn(N)))

Remark 2.2. one has to start at n > 50 to be reasonably confident that Tn(N) is
close to ω(N).

Remark 2.3. in both cases considered, we discovered that ω(N) is made of two
disjoint pieces ω0(N), ω1(N) exchanged by T such that

T 2n(N)→ ω0(N)

T 2n+1(N)→ ω1(N)

[ω0 corresponding to low densities and ω1 to high densities]. To plot p(ω0(N)), it
is sufficient to consider X2n, 50 6 2n 6 1000.

3) we checked (at least in one case) that the 3-dimensional projection p is OK: we
took a small box in R3 containing 30 points Xni (1 6 i 6 30); for these times
ni, we know that the N(ni) are close to each other, as are the N(ni − 1) and
N(ni − 2); we checked that the functions N(ni − s), −A1 6 s 6 0, are actually
uniformly close (for all −A1 6 s 6 0).

4) We checked (for these same times ni) a sensibility to initial condition, and a
Cantor-like structure in the past, which are typical of chaotic attractors: con-
sidering the functions N(ni − s) (1 6 i 6 30), which are uniformly close for
−A1 6 s 6 0, we observed that they diverge in a rather uniform way for s > 0,
while they diverge by “packets” for s < −A1: see the picture by H. Birkeland on
the computer.2

5) The dynamics is obviously Xn → Xn+1 (actually X2n → X2n+2, see Remark
2.3, if we are interested in ω0(N)); by identifying on the screen the successiveXn,
one is able to guess what the map T 1 : ω(N)→ ω(N) (or T 2 : ω0(N)→ ω0(N))
should look like [see Appendix E].

2Unfortunately, we could not find this picture in Jean-Christophe Yoccoz archives. Nevertheless, Jean-
Christophe asked Sylvain Arlot to draw a similar picture which became later Figure 27 at page 48 of Arlot’s
mémoire de DEA (available at https://arxiv.org/abs/1204.0799). For the sake of convenience of the reader, we
reproduce this figure here as Figure 1.
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FIGURE 1. S. Arlot’s “version” of a picture by H. Birkeland.

3. WHAT’S NEXT?

There are (at least) 3 lines of investigation that suggest themselves

1 Better understanding of the two chaotic attractors.

2 Pursuing the investigation of parameter space in the seasonal toy model: there is
certainly much more to see.

3 Going to more complicated models, including maternal effects ...

My feeling is that 3 should be postponed till we get a better understanding of the toy
model, which serves as a reference.

I will give below some indications for 1 and 2 , but there are only general guidelines
which should be adapted to what comes out of the simulations!

1 We fix here one of the two sets of parameter values for which a chaotic attractor
was detected.

a With 1000-year time series, we have only 6 500 points to draw p(ω0(N)) in R3.
One needs a much longer (50000 to 100000 years) time series ... [and discard the first 100
years, say]
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b With say a ∼ 30000 pts finite approximation to ω0(N) [draw it!]

X2n = (N(2n− 2), N(2n− 1), N(2n))

= (X0
2n, X

1
2n, X

2
2n)

located in a box B0:
X0

min 6 X
0 6 X0

max = X0
min + ∆X0

X1
min 6 X

1 6 X1
max = X1

min + ∆X1

X2
min 6 X

2 6 X2
max = X2

min + ∆X2

one can do the following procedure
• divide B0 in 8 boxes B1

i (1 6 i 6 8) with sides 1
2∆X0, 1

2∆X1, 1
2∆X2; discard

those boxes which do not contain any X2n

• for each boxB1
i which is left, divide it into 8 boxesB2

i,j with sides 1
4∆X0, 1

4∆X1,
1
4∆X2; discard those which do not contain any X2n

...

• for each box Bki1...ik (with sides 2−k∆X0, 2−k∆X1, 2−k∆X2) which is left,
divide it into 8 boxes Bk+1

i1...ik+1
of sides 2−k−1∆X0, 2−k−1∆X1, 2−k−1∆X2

and discard those which do not contain any X2n

• Stop this process at the first integer k0 for which the number of boxes Bk0 which
contain some X2n is > 3000.

c Fractal dimension:
For 0 6 k 6 k0, let rk be the number of boxes Bki1...ik at generation k which contain

some X2n. Compute, for k02 6 k 6 k0 (say) the points

(k log 2, log rk)

They should (!?!) be more or less on a line, the slope of which would be the fractal
dimension of the attractor.

[with rk0 ∼ 3000 one can perhaps (??) expect k0 ' 9 or 10 and thus get ∼ 5 points to
draw the line!]

d “Lyapunov exponents”

• Consider only those boxesBk0i1...ik0
of the kth0 generation which contain at least 10

(say) points;
• for every such box, let X2n1 , . . . , X2nr the corresponding points (thus r > 10);
• for 1 6 i < j 6 r, compute

D(i, j) = max
−26t60

|N(2ni + t)−N(2nj + t)|

D+(i, j) = max
06t62

|N(2ni + t)−N(2nj + t)|

D−(i, j) = max
−46t6−2

|N(2ni + t)−N(2nj + t)|

[t is here a “continuous” variable, meaning 240 “steps” if one uses 120 steps/year]
• Compute

λ+(i, j) =
D+(i, j)

D(i, j)

λ−(i, j) =
D−(i, j)

D(i, j)
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• For the box B = Bk0i1...ik0
which is considered, define

λ+(B) = max
16i<j6r

λ+(i, j)

λ−(B) = max
16i<j6r

λ−(i, j)

• Color the box B (in the 3-D representation) according to the value of λ+(B)
• Do the same with λ−(B)
• Do the same with the product λ+(B)λ−(B)
• It would be good to do the same as above with the relative distances:

D̂(i, j) = max
−26t60

∣∣∣∣N(2ni + t)−N(2nj + t)

N(2ni + t)

∣∣∣∣
defining similarly D̂+(i, j), D̂−(i, j), λ̂(i, j) = D̂+(i,j)

D̂−(i,j)
, λ̂−(i, j), λ̂+(B), λ̂−(B),

. . . and to compare the pictures.

e Checking the geometry of the attractors.
A possible geometry is suggested at the end of Appendix E; I need to think more on the

ways that one could check that the guess is right.

2 Exploring parameter space
Keeping A1 = 2, we have still 4 parameters m0, γ, ρ, A0 so no systematic exploration

is possible.

a “Transition to chaos” [we keep here m0 = 50]
Consider the two sets of parameter values

PI = (A0 = 0.23 ρ = 0.34 γ = 8)

PII = (A0 = 0.18 ρ = 0.41 γ = 8.25)

for which a chaotic attractor was observed.
Choose a third set of parameter values, with ρ = 0 (unseasonal model) for which we

have a stable equilibrium. For instance

PIII = (A0 = 0.1, ρ = 0, γ = 6)

should do (If not take γ slightly smaller).
One wants to let the parameters vary slowly along the 3 lines which join these three

points in parameter space. [50 pts per line should be OK]
What we want to know, for each set of parameter values is
• whether the solution is periodic, and, if yes, which is the period?
• when it is not periodic, what the “attractor” looks like?

One could (!?) proceed as follows (there may be better ways)
• for each new parameter, choose carefully the initial data (see below)
• let it run for 50 years (say); draw the points Xn = (N(n − 2), N(n − 1), N(n))

for 10 < n 6 50
• if it seems that we have only a few points on the screen (say 6 8), the solution is

periodic and the number of points is the period
• otherwise, one should compute the solution for 500 years (say), and look again at

the (Xn)506n6500 . . .
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Anyway, I feel that one shouldn’t have a rigid strategy beforehand ... One should adapt
it to the situations encountered.

Remark on initial conditions: For many sets of parameter values, it appears that we have
several stable stationary regimes, each with its own basin of attraction; therefore the choice
of initial conditions is important; for instance, for the parameter values giving chaotic
attractors, there is also a stable periodic orbit (far from the attractors).

When one tries a set of parameter values far from anything tested before, it is difficult
to guess a good choice of initial conditions: one should just avoid a discontinuity in the
solution [see the modification we did by affine interpolation on [−A0, 0]].

On the other hand, when we consider a set of parameter values P̃ close to a set P (which
has been tested to give something interesting, one could do the following

• choose a first approximation for initial conditions for P̃ , a two-year period of the
solution for P for instance N0

P (t) = NP (30 + t) for −2 6 t 6 0.
• this is a reasonable choice, but not completely satisfactory because we have cre-

ated a small discontinuity at time t = 0; indeed, we have

NP (30) =

∫ A1=2

A0

S(a)mρ(30− a)m(NP (30− a)) da

and therefore

|N0
P̃

(0)−
∫ A1=2

Ã0

S(a)mρ̃(30− a)m̃(N0
P̃

(−a)) da|

(with ρ̃, Ã0, γ̃, m̃0 close to ρ,A0, γ,m0) is small but non zero. What one could do
is to modify N0

P̃
into NP̃ on [−2, 0] as follows:

– compute NP̃ (0) =
∫ A1=2

Ã0
S(a)mρ̃(30−a)m̃(NP (30−a)) da (with the new

set P̃ of parameter values)
– define the new set NP̃ (t) of initial conditions (−2 6 t 6 0) as

NP̃ (t) = N0
P̃

(t) = NP (30− a) for − 2 6 t 6 −Ã0

on − Ã0 6 t 6 0,make the affine correction
which makes NP̃ continuous, i.e.
NP̃ (t) = N0

P̃
(t) + [NP̃ (0)−N0

P̃
(0)] t+Ã0

Ã0

= NP (30 + t) + [NP̃ (0)−NP (30)] t+Ã0

Ã0

This should give a satisfactory set of initial values allowing to “follow”3 attractors when
parameter values change slowly.

Remark 3.1. In the same spirit, when exploring the lines PIPIII or PIIPIII in parameter
space, it is better to start from PI or PII ; it is not excluded at all (and perhaps it’s worth
testing it) that starting from PIII (with stable equilibrium), what one gets at PI or PII is
not the chaotic attractor but another stable stationary regime that coexists from the same
parameters.

b Plainly the chaotic attractors that we saw do not correspond faithfully to what is
observed: there is a succession of high and lows on a 2-year basis [cf. decomposition

3In this direction, Sylvain Arlot produced some movies (available at https://hal.inria.fr/hal-00679905/) show-
ing how some attractors change when the parameter A0 varies.
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ω(N) = ω0(N) ∪ ω1(N)] which is too short compared to reality. Also, our parameter
values are not quite realistic.

The too short succession of highs and lows could be explained by a too large value of
m0: intuitively, after a crash, the population will increase exponentially fast, till it gets
well past the threshold N = 1 and crashes again; with m0 large, the exponential increase
is very fast, and it takes short time before the next crash.

Therefore, it seems worthwhile to start from the parameter values giving chaotic attrac-
tors, and to change slowly the value of m0 to lower values ...

On the other hand, I am not too much worried to have slightly unrealistic parameter
values for ρ and A0; on one hand, fecundity is probably not completely 0 in the winter
(according to what Nigel4 told me); on the other, if we find in the toy model the right kind
of chaotic dynamics, one could hope to “follow” it in more complicated models (maternal
effects!) where it could exist for more realistic parameter values ...

4Nigel Gilles Yoccoz.
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APPENDIX A. SCALING THE POPULATION IN THE TOY MODEL

a Cut-off at N = 1
We have here

(1) N(t) =

∫ A1

A0

S(a)N(t− a)mρ(t− a)m(N(t− a)) da

with

m(N) =

{
m0 for N 6 1
m0N

−γ for N > 1

b Let s > 0, and let N̂ = sN ; the equation (1) gives

(1s) N̂(t) =

∫ A1

A0

S(a)N̂(t− a)mρ(t− a)m(N(t− a)) da

and writing m(N) = m̂(N̂), we have

m̂(N̂) =

{
m0 for N̂ 6 s

m0s
−γN̂−γ for N̂ > s

There are two reasonable choices for s (one of which is indicated in the text.

1 we take s = m
−1/γ
0 , which gives m0s

γ = 1; setting N̂c = s gives

m̂(N̂) =

{
N̂−γc for N̂ 6 N̂c
N̂−γ for N̂ > N̂c

2 If m0

∫ A1

A0
S(a) da > 1 (which will always be satisfied for reasonable choices of

m0), we take s such that

[m0

∫ A1

A0

S(a) da]sγ = 1;

the equilibrium in the unseasonal case is at N = s−1, i.e. N̂ = 1.

We then have

m̂(N̂) =

{
m0 for N̂ 6 N̂1

c

(
∫ A1

A0
S(a) da)−1N̂−γ for N̂ > N̂1

c

where

N̂1
c = s =

(
m0

∫ A1

A0

S(a) da

)−1/γ

Going from the scale a (variable N ) to scales b1 or b2 involves a change of scale

which depends on the cutoff level m0; on the other hand, the change of scales from b1

to b2 depends not on m0, but only on the function S (which is fixed).
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APPENDIX B. HOPF BIFURCATION FOR EQUILIBRIA

B.1. Model in the plane. Consider the 1-parameter family of differential equations in the
plane

(∗ε)
{

dx
dt = −λy + εx− ax(x2 + y2)
dy
dt = λx+ εy − ay(x2 + y2)

where λ, a are some fixed constants > 0 and we are interested in x, y, ε close to 0.
For all ε we have an equilibrium at (x = 0, y = 0), and the eigenvalues are ±iλ + ε:

therefore the equilibrium is stable for ε < 0, unstable for ε > 0.
Going to (modified) polar coordinates R = (x2 + y2), θ = arctan y/x gives{ dR

dt = 2(xẋ+ yẏ) = 2R(ε−R)
dθ
dt = xẏ−yẋ

x2+y2 = λ

which can be solved explicitly: the angular velocity is constant; if ε < 0, all solutions
converge to the equilibrium; if ε > 0, all solutions but the equilibrium converge to the
periodic orbit {

R = ε

θ̇ = λ

B.2. The general phenomenon. One considers a 1-parameter family of differential equa-
tions in RN

(∗ε)
dx

dt
= Fε(x)

with the following assumptions
(H0) For ε = 0, we have an equilibrium at x = 0 (∈ RN ); moreover the eigenvalues

of D0F0 have negative real part, except two which are purely imaginary, distinct
from 0 (and complex conjugate to each other); let µ0 = iλ and µ0 = −iλ be these
eigenvalues.

This hypothesis allows after a change of variables in the neighborhood of the equilibrium
to rewrite (∗0) as 

dx0

dt = −λx1 − ax0(x2
0 + x2

1) + h.o.t.
dx1

dt = λx0 − ax1(x2
0 + x2

1) + h.o.t.
dx′

dt = Ax′ + h.o.t.
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where x = (x0, x1, x
′), x′ ∈ RN−2, and the eigenvalue of the (N − 2)× (N − 2) matrix

A have negative real part.
We next assume that
(H1) a > 0

The final assumption involves dependence on the parameter ε: for ε close to 0, we can
follow the non-degenerate equilibrium and the eigenvalues µε, µε close to the imaginary
axis. One assumes that

(H2) ∂
∂εRe µε > 0 at ε = 0.

Under hypotheses (H0), (H1), (H2), the dynamics of the equations (∗ε) are as in the plane
model:

• for ε < 0, we have a stable equilibrium
• for ε = 0, it is still stable but weakly so;
• for ε > 0, the equilibrium is unstable, but we have a “circular” periodic orbit

which is stable and has diameter ∼
√
ε.
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APPENDIX C. HOPF BIFURCATION FOR PERIODIC ORBITS OR DIFFEOMORPHISMS

C.1. Poincaré return map. Assume that a differential equation

(∗0)
dx

dt
= F0(x), x ∈ RN

has a periodic solution x0(t+T ) = x0(t). To study the dynamics of (∗0) near this solution,
Poincaré considers a transversal Σ to this orbit and introduces the first return map to Σ (see
picture)

which leads to the study of a diffeomorphism f0 near a fixed point x′0 corresponding to the
periodic orbit.

If one considers a slight deformation (∗ε) of (∗0) one can still introduce the first return
map fε for this new equation, and it is a slight deformation of f0.

Thus, the study of differential equations near a periodic orbit is equivalent to that of
diffeomorphisms (i.e. discrete time) near fixed points.

We will go to this context in the following.

C.2. Model in the plane. Identifying R2 to C, we consider

fε(z) = λ(1 + ε)z − az|z|2

where |λ| = 1, a > 0 are fixed and ε close to 0 is a real parameter; we assume λ 6= ±1.
We have {

|fε(z)| = |z|(1 + ε− a|z|2),
Arg fε(z) = Arg z + Arg λ

hence the fixed point z = 0 is stable for ε < 0, weakly stable for ε = 0, unstable for ε > 0;
on the other hand, the circle

|z| =
( ε
a

)1/2

is invariant and attracts all orbits close to 0 except the equilibrium itself when ε > 0.

C.3. The general phenomenon. One considers a 1-parameter family of diffeomorphisms

x 7→ fε(x), x ∈ RN .
One assumes that f0 has a fixed point at 0, and that the eigenvalues of D0f0 have

modulus < 1 except two, say µ0, µ0 for which |µ0| = 1.
Moreover one assumes that µk0 6= 1 for k = 1, 2, 3, 4 (i.e., µ0 6= ±1,±i,±j). Then

one formulates (H1’), (H2’) in completely the same way that Appendix B and get the same
description of the dynamics that in the plane model.

In particular, for ε > 0, we get a stable invariant “circular” curve of radius ∼ ε1/2.
However, the dynamics on the curve are not necessarily as simple as in the plane model

(where it is a rigid rotation by Arg λ): what one gets is a diffeomorphism of the curve
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close to a rigid rotation. This in general does not imply that it behaves like a rigid rotation.
However, for most parameters (in the measure-theoretical sense), it can be proven that
these dynamics are smoothly conjugated to a rigid (irrational) rotation.

This last case corresponds to quasiperiodic motion on a 2-dimensional torus when we
started with a periodic orbit of a differential equation
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APPENDIX D. SADDLE NODES BIFURCATIONS

This is very similar (but simpler) than Hopf bifurcations.
We will deal with periodic orbits (rather than equilibria), for differential equations, and

this amounts, via the Poincaré return map, to deal with fixed points of diffeomorphisms.

D.1. The 1-D model. Consider the 1-parameter family of local diffeomorphisms

fε(x) = x+ x2 − ε x ∈ R close to 0
ε small

If ε < 0, we have fε(x)− x = x2− ε > 0, and thus no fixed points near 0 (orbits cross
from left to right in a neighborhood of 0

If ε = 0, we have a fixed point at 0 with eigenvalue 1 which is semi-stable: it attracts a
half-neighborhood.

If ε > 0, we have two fixed points ±ε1/2, with eigenvalues 1± 2ε1/2: therefore ε1/2 is
unstable while −ε1/2 is stable

D.2. The general phenomenon. We have a 1-parameters family of local diffeomorphisms

x 7→ fε(x) x ∈ RN , close to 0

We assume that
(H0) 0 is a fixed point for f0; all eigenvalues of D0f0 have modulus < 1, except one

which is equal to 1 (denote this eigenvalue by µ0)
Then, after a change of coordinates, we can write x = (x0, x

′), x′ ∈ RN−1 and

f0(x0, x
′) = (x0 + ax2

0 + h.o.t, Ax′ + h.o.t.)

(where all eigenvalues of A have modulus < 1). We assume
(H1) a 6= 0 (and even say a > 0)
Finally, writing f0

ε for the first coordinate of fε, we want that
(H2) ∂

∂εf
0
ε (0, 0) < 0 at ε = 0

Then
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• for ε < 0, there is no fixed point: orbits cross a neighborhood of 0 with increasing
x0

• for ε = 0 there is a semistable fixed point attracting a half-neighborhood
• for ε > 0 there are two fixed points (at distance ∼ ε1/2): one is stable while the

other is unstable (with exactly one unstable eigenvalue)
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APPENDIX E. SOME CHAOTIC ATTRACTORS

We start with the simplest ones: uniformly hyperbolic attractors, where we describe the
simplest example: the solenoid. Unfortunately, this class requires a geometry that does
not seem to appear in our toy model. We therefore go to the larger class of non-uniformly
hyperbolic attractors, of which the prototype is the Henon attractor; actually, what we
observe for the second set of parameter values look very much like the Henon attractor ...!!

E.1. Uniformly hyperbolic attractors: the solenoid. Consider the full torus T = {(θ, z), θ ∈
R/Z, z ∈ C, |z| 6 1} and the map

f : T → T

(θ, z) → (2θ mod 1,
1

2
e2πiθ +

1

3
z)

(thus the map expands the θ coordinate and contracts the z-coordinate (2-dimensional)).

The attractor Λ is
Λ =

⋂
n>0

fn(T )

If we consider the intersection of Λ with any disk {θ = θ0}, we get a Cantor set

hence Λ is locally the product of a Cantor set and a line.
We now list some properties of Λ which are characteristic of hyperbolic attractors.
1 At every point x = (θ, z) in Λ, there is a linear decomposition

R3 = Esx ⊕ Eux
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where Esx is 2-dimensional (in our case, Esx is the plane z = cte) and Eux is 1-dimensional,
tangent to Λ, such that

• the tangent map Tf leaves the decomposition invariant: Tf(Esx) = Esf(x), Tf(Eux ) =

Euf(x)

• The tangent map Tf contracts uniformly vectors in Esx, and expands uniformly
vector in Eux

• Esx and Eux depend continuously on x ∈ Λ.
[we actually just gave the definition of a hyperbolic set].

2 Sensibility w.r.t. initial conditions
Let x = (θ, z), x′ = (θ′, z′) two points in Λ, which could be arbitrarily close; unless

θ = θ′, the distance between fn(x) and fn(x′) will grow [the difference of θ coordinates
being multiplied by 2] till it has size ∼ 1.

3 Shadowing property
Consider an ε pseudo-orbit, i.e. a sequence (xn)n>0 near Λ with

d(xn+1, f(xn)) < ε

Then, there exists a true orbit (fnx)n>0 s.t.

d(xn, f
nx) < Cε

Remark E.1. This is fundamental: indeed, because of roundoff errors, any numerical
simulation leads to pseudoorbits; the shadowing property guarantees that what we see on
the screen actually happens in the attractor (but probably not exactly for the given initial
condition).

4 Structural stability
This is closely related to the shadowing property.
Assume that we perturb our map f to some nearby map g; define

Λg =
⋂
n>0

gn(T )

Then there is a homeomorphism h from Λ onto Λg which conjugates f on Λ and g on
Λg:

h ◦ f = g ◦ h
In other terms, up to a continuous change of coordinates, we see exactly the same picture

and dynamics for f and g.
5 Physical (or Sinai–Ruelle–Bowen) measure

There is a measure µ = µf on Λ with the following property. Let ϕ be a continuous
function on T . Pick a point x “at random” in T . Then, with probability 1 (in x), the time
averages

1

n

n−1∑
0

ϕ(f ix)

will converge to the “spatial” average ∫
Λ

ϕdµf

[this is not the classical Boltzmann hypothesis: the measure µ is quite singular, concen-
trated on the attractor which has volume 0].

Moreover, the measure µ is stochastically stable in the following sense:
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Consider a pseudoorbit (xn)n>0, as above, but assume now that the ε-jumps from f(xn)
to xn+1 are independent random variables.

Then the time averages
1

n

n−1∑
0

ϕ(xi)

will converge, as n→ +∞ and then ε→ 0, to
∫

Λ
ϕdµf .

Remark E.2. It is not quite true that the roundoff errors in numerical simulation are inde-
pendent random variables! Still, due to the sensibility to initial conditions, there is some
degree of independence, and it is reasonable to expect that the points we compute will
“charge” Λ according to µf .

E.2. Non-uniformly hyperbolic attractors: the Henon attractor. We consider the map
H = Hb,c : R2 → R2 (

x
y
→
(
x2 + c− by

x

where 0 < b � 1 and c is slightly larger than −2. There is a rectangle R for which the
picture looks like

[the rectangle is strectched and folded; for the solenoid, there is only a stretching; all
the complications in the present case come from the fold]

The attractor Λ is now
Λ =

⋂
n>0

Hn(R)

At a typical point of Λ, a zoom will give

(i.e. a line × Cantor structure, as was the case at all points in the solenoid), but there
are some nasty points (dense in Λ) where the zoom is rather like
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For most (but not all) values of parameter c, the properties of Λ are the following:

1 the decomposition
R2 = Esx ⊕ Eux

is only valid at almost all points (w.r. to the physical measure, see 5 below), but Esx, Eux
now do not depend continuously on x, and the contraction and expansion are not uniform
in x

2 Sensibility w.r. to initial conditions still holds.

3 The shadowing property holds for most pseudoorbits, but there are some (very
special) pseudoorbits which are not approximated by true orbits.

4 Structural stability does not hold [actually, with arbitrarily small perturbations of c,
we can get completely different dynamics]. Still, for most perturbations of Hb,c, we get an
attractor of the same kind.

5 Physical measure.
This still exists and has the same properties (stochastic stability) than for the solenoid.

Commentary: The theory of hyperbolic attractors was completed by ∼ 1970. For non-
uniformly hyperbolic ones, the theory is far from complete, and it is a “hot” subject at the
moment.

E.3. Possible geometries of the chaotic attractors E.1, E.2. E.2 looks very much like
a Henon attractor
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A tube is stretched and folded inside itself.
The transverse contraction (∞-dimensional!) should be stronger than the strectching.

in E.1 , the geometry could (!?!?) be as follows with more complicated strectching and
folding.
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APPENDIX F. A PRIORI ESTIMATES IN THE TOY MODEL

Let t0 ∈ R/Z and N an element of Yt0 , i.e. a continuous function on [−A1, 0] which
satisfies

N(0) =

∫ A1

A0

S(a)N(−a)m(N(−a))mρ(t0 − a) da,

and takes only positive values. For 0 6 s 6 A0, we define

N(s) =

∫ A1

A0

S(a)N(s− a)m(N(s− a))mρ(t0 + s− a) da,

(we have N(0) = N(0), hence N extends N and gives a solution of the toy model). We
assume always γ > 1.

Lemma F.1. For any N ∈ Yt0 we have, for 0 6 s 6 A0

N(s) 6 Nmax = m0
A1

2
(1− A0

A1
)2

Proof. We have

Nm(N) =

{
m0N if N 6 1

m0N
1−γ if N > 1

hence Nm(N) 6 m0 in all cases. Therefore, as mρ 6 1

N(s) 6 m0

∫ A1

A0

S(a) da = Nmax

�

We introduce the quantity

c0 =

∫ A0+1

A0+ρ

S(a) da = (1− ρ)

(
1−

A0 + 1+ρ
2

A1

)
We will always assume c0m0 > 1.

Lemma F.2. Let N ∈ Yt0 satisfying N 6 Nmax; define

i(N) = min(N(−a), 0 6 a 6 A1) > 0

If i(N) 6 N1−γ
max we have

N(s) > c0m0i(N)(> i(N)) for all 0 6 s 6 A0

If i(N) > N1−γ
max we have

N(s) > c0m0N
1−γ
max for all 0 6 s 6 A0

Corollary F.3. If γ > 1, c0m0 > 1, any solution N(t) (−A1 6 t < +∞) of the toy model
satisfies

c0m0N
1−γ
max 6 N(t) 6 Nmax

for t large enough.

Proof of Lemma F.2. We have now, for i(N) 6 N 6 Nmax

Nm(N) > m0N
1−γ
max if i(N) > N1−γ

max ,

> m0i(N) if i(N) 6 N1−γ
max < 1,
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and therefore

N(s) > m0 inf(i(N), N1−γ
max )

∫ A1

A0

S(a)mρ(t0 + s− a) da

It is now easy to check that, as S is decreasing, we have, for any u ∈ R∫ A1

A0

S(a)mρ(u− a) da >
∫ A0+1

A0+ρ

S(a) da = c0

This gives lemma F.2. �

Lemma F.4. Let N ∈ Yt0 , satisfying N 6 Nmax; define

L = m0(2− A0

A1
).

For 0 6 s0, s1 6 A0, we have

|N(s0)−N(s1)| 6 L|s0 − s1|.

Proof. We have

N(si) =

∫ si−A0

si−A1

S(si − u)N(u)m(N(u))mρ(t0 + u) du

Here we have N(u)m(N(u)) 6 m0 and mρ(t0 + u) 6 1; moreover 0 6 S(si − u) 6 1
and

|S(s1 − u)− S(s0 − u)| 6 A−1
1 |s1 − s0|

Therefore

|N(s1)−N(s0)| = |
∫ s0−A0

s0−A1

[S(s1 − u)− S(s0 − u)]N(u)m(N(u))mρ(t0 + u) du

+

∫ s1−A0

s0−A0

−
∫ s1−A1

s0−A−1

S(s1 − u)N(u)m(N(u))mρ(t0 + u)du|

6 m0(1− A0

A1
)|s0 − s1|+m0|s0 − s1|

6 L|s0 − s1|

�

We now introduce

Kt0 = {N ∈ Yt0 , for any s ∈ [−A1, 0]

c0m0N
1−γ
max 6 N(s) 6 Nmax and for any

s0, s1 ∈ [−A1, 0], |N(s0)−N(s1)| 6 L|s0 − s1|}

A basic theorem in elementary analysis (Ascoli’s theorem) guarantees that Kt0 is a
compact subset of Yt0 (for the uniform convergence topology).

The lemmas above prove the following

Proposition F.5. Let N ∈ Y0; write

T s(0, N) = (s mod 1, Ns) for all s > 0

a) If N ∈ K0, then Ns ∈ Ks for all s > 0; in particular, T 1(K0) ⊂ K0.
b) In any case, there exists s0 such that Ns ∈ Ks for all s > s0.
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The attractor of the toy model is then defined as

Λ = {(t,N), t ∈ R/Z, N ∈ Λt}
where

Λt =
⋂
n>0

Tn(Kt)

We have
T s(Λt) = Λt+s

and in particular
T 1(Λ0) = Λ0.

The set Λ, Λt are compact; the set Λ satisfies:
for any neighborhood U of Λ, and any initial condition (0, N) (N ∈ Y0), there exists

s0 = s0(N,U) such that

T s(0, N) ∈ U for all s > s0

(which explains the terminology attractor).


