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Abstract. The initial portion of the Lagrange spectrum LB7 of certain square-

tiled surfaces of genus two was described in details in the work of Hubert–
Lelièvre–Marchese–Ulcigrai. In particular, they proved that the smallest ele-

ment of LB7 is an isolated point φ1, but the second smallest value φ2 of LB7 is

an accumulation point. Also, they conjectured that the portion LB7 ∩ [φ2, η1)
is a Cantor set for a specific value η1 and they asked about the continuity

properties of the Hausdorff dimension of LB7 ∩ (−∞, t) as a function of t < η1.

In this note, we solve affirmatively these problems.

1. Introduction

The classical Lagrange spectrum L was originally introduced in relation to the
study of Diophantine approximations of irrational numbers and, alternatively, it
can also be seen as the set of real numbers encoding cusp excursions of geodesics
on the modular surface, i.e.,

L =

{
lim sup
t→∞

2

sys(gt(X))2
<∞ : X ∈ SL(2,R)/SL(2,Z)

}
,

where gt := diag(et, e−t) and sys(Y ) := min{|h(v)|R2 : v ∈ Z2 \ {(0, 0)}} for Y =
h · SL(2,Z) ∈ SL(2,R)/SL(2,Z).

This point of view led Hubert–Marchese–Ulcigrai [5] to naturally extend the
notion of Lagrange spectrum to the context of Teichmüller dynamics (see, e.g.,
Zorich’s survey [8] for the basic aspects of this theory).

More concretely, they defined the Lagrange spectrum LI associated to the closure
I of a SL(2,R)-orbit on the moduli space of unit area translation surfaces as

LI =

{
lim sup
t→∞

2

sys(gt(X))2
<∞ : X ∈ I

}
,

where the action of gt is the so-called Teichmüller geodesic flow and sys(Y ) is the
minimal length of a saddle-connection of Y . Also, they showed that LI shares some
common features with the classical Lagrange spectrum, e.g.,

• if I consists of some translation surfaces with genus g and σ conical sin-

gularities, then LI is a subset of [ (2g−2+σ)π2 ,∞) given by the closure of

the maximal values of the function Y 7→ 2
sys(Y )2 along gt-periodic orbits

included in I;
• if I contains a square-tiled surface, then LI contains a Hall’s ray, i.e.,

[r,∞) ⊂ LI for some r > 0.

On the other hand, it was discovered by Hubert–Lelièvre–Marchese–Ulcigrai [4]
that the beginning of the Lagrange spectra of SL(2,R)-orbits of square-tiled surfaces
might behave differently from the classical Lagrange spectrum. More precisely, let
X be the square-tiled surface of genus two with unit area obtained from seven
squares sq(k), 1 ≤ k ≤ 7, in R2 with areas 1/7 by gluing the right vertical side of
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sq(k) to the left vertical side of sq(h(k)) and the top horizontal side of sq(k) to the
bottom horizontal side of sq(v(k)), where h and v are the permutations with cycles

h = (1, 2, 3)(4)(5)(6)(7) and v = (1, 4, 5, 6, 7)(2)(3).

By following the terminology of Hubert–Lelièvre [3], the SL(2,R)-orbit of X is
called B7. It was shown by Hubert–Lelièvre–Marchese–Ulcigrai that the Lagrange
spectrum LB7 associated to B7 starts with an isolated point and an accumulation
point1, namely:

[0, φ2) ∩ LB7 = {φ1} and φ2 ∈ L′B7,

where2 φ1 := 7+14·[0; 3, 1] = 10.692676 . . . and φ2 := 14·[0; 1, 4, 1, 3] = 11.582575 . . . .
Furthermore, they conjectured that

K := LB7 ∩ [φ2, η1)

is a Cantor set and they asked whether the Hausdorff dimension of LB7 ∩ (−∞, t)
varies continuously with φ1 < t < η1 := 7 · [5;1,4,2,1,5]+[0;1,5,1,1,5]

4 = 11.655309 . . . .
In this note, we show that:

Theorem 1.1. The Hausdorff dimension d(t) of LB7∩(−∞, t) varies continuously
with t < η1.

Theorem 1.2. The portion K = LB7 ∩ [φ2, η1) of LB7 is a Cantor set.

Remark 1.3. We will also show that 0.30944 < d(η1) < 0.30976, any φ ∈ K is
accumulated by Cantor sets with positive Hausdorff dimensions contained in K, and
d(t) is not Hölder continuous.

For the sake of exposition, we divide the rest of this note into five sections:
first, we review some results from [4] about the description of the initial portion
of LB7; next, we employ the results of Cerqueira, Moreira and the author [2] to
deduce the continuity of the Hausdorff dimension of LB7 ∩ (−∞, t) as a function
of t ∈ (−∞, η1); afterwards, we show that K is a Cantor set; then, we modify an
argument of Moreira [7] in order to prove that any φ ∈ K is accumulated by Cantor
sets with positive Hausdorff dimensions contained in K; finally, we show that d(t)
is not Hölder continuous near φ2.

2. Preliminaries

Consider the left shift dynamics σ : {a, b}Z → {a, b}Z on the symbolic space
Σ := {a, b}Z where a := 1, 4, 2, 4 and b := 1, 3. It was shown in [4, §4.5] that

LB7 ∩ (−∞, η1) = {φ1} ∪K =

{
Lσ(ξ) := lim sup

n→∞
h(σn(ξ)) : ξ ∈ Σ

}
where h : Σ→ R is the height function given by

h((ξn)n∈Z) :=

{
7 · ([0; 1, 4, ξ1, ξ2, . . . ] + [0; 1, 4, ξ−1, ξ−2, . . . ]), if ξ0 = a,
7 · (1 + [0; 3, ξ1, ξ2, . . . ] + [0; 3, ξ−1, ξ−2, . . . ]), if ξ0 = b.

Also, it is essentially proved in [4, §5] that K is a perfect set. Indeed, if φ ∈
K \ {φ2, φ∞} with φ∞ := 14 · [0, 1, 4, 1, 4, 2, 4] = h(a), then Lemmas 5.1, 5.2 and 5.4
of their article give one of the following two scenarios:

1This contrasts with the classical Lagrange spectrum because L∩ (−∞, 3) = {k1 < k2 < · · · <
kn < . . . } where kn is an explicit increasing sequence converging to 3.

2We are using the notations [a0; a1, . . . ] = a0+ 1
a1+

1

. . .

and c1, . . . , ck = c1, . . . , ck, c1, . . . ck, . . .
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(i) there exists k ≥ 2 such that

φ =

{
14 · [0; 1, 4, a(i), b], if k = 2i+ 1 is odd,

7 · ([0; 1, 4, a(i+1), b] + [0; 1, 4, a(i), b]), if k = 2i+ 2 is even,

where c(j) := c . . . c︸ ︷︷ ︸
j times

, or

(ii) there are k, n ≥ 1 such that φ = Lσ(ξ) where ξ ∈ Σ contains infinitely many
copies of a(k)b(n)a but no copies of a(k+1) and no copies of a(k)b(n−1)a.

By applying again Lemmas 5.1, 5.2 and 5.4 of their article, we have that φ ∈ K′
because

• in the first case, φ = lim
m→∞

Lσ(a(k)b(m)), and

• in the second case, φ = lim
m→∞

Lσ(b(P (m))ξQ(m)+1 . . . ξR(m)−1b(S(m))), where

ξQ(m) and ξR(m) correspond to the last letter a in appropriately chosen

occurrences of the block a(k)b(n)a in ξ, and P (m) and S(m) are suitably
large in comparison P (m− 1), Q(m− 1), R(m− 1) and S(m− 1).

Since Theorem 1.1 of their article ensures that φ2, φ∞ ∈ K′, we have that K is a
closed set without no isolated points.

3. Proof of Theorem 1.1

It is well-known [1] that the left-shift dynamics on {1, 2, 3, 4}Z can be smoothly
realized via the natural extension ϕ(x, y) = ({1/x}, 1/(b1/xc+y)) of the Gauss map
g([0; a1, a2, . . . ]) := [0; a2, . . . ]. Since ϕ is a smooth area-preserving diffeomorphism
whose local stable and unstable manifolds are parallel to the axes and the gradient
of the smooth realization of the height function h is transverse to the axes, the key
results from [2] can be employed to derive that:

• the Hausdorff dimension d(t) of {Lσ(ξ) : ξ ∈ Σ} ∩ (−∞, t) depends contin-
uously on t ∈ R, and

• d(η1) = 2 · D(η1), where D(η1) is the Hausdorff dimension of Cantor set
C(a, b) of real numbers with continued fraction expansions in Σ+ = {a, b}N.

At this point, the desired theorem follows from the fact that LB7 ∩ (−∞, t) =
{Lσ(ξ) : ξ ∈ Σ} ∩ (−∞, t) for all t < η1.

4. Proof of Theorem 1.2

We saw in Section 2 that K is a perfect set. Therefore, our task of showing that
K is a Cantor set can be reduced to prove that d(η1) = 2 ·D(η1) < 1.

In the sequel, we will show that D(η1) = 0.154 . . . . For this sake, we observe
that

C(a, b) =
⋂
n∈N

ψ−n(Ib ∪ Ia)

where Ib = [[0; b], [0; ba]], Ia = [[0; ab], [0; a]], and ψ : Ib ∪ Ia → [[0; b], [0; a]],
ψ|Ib(x) = g2(x), ψ|Ia(x) = g4(x). Hence, we can use the method described in
[6, §4] to obtain that, for all n ∈ N, one has

αn ≤ D(η1) ≤ βn
where ∑
(x1,...,xk)∈{a,b}n

(
min

{
k∏
i=1

[0;xi, . . . , xk, 1, 3],

k∏
i=1

[0;xi, . . . , xk, 1, 4, 1, 2]

})2αn

= 1
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and ∑
(x1,...,xk)∈{a,b}n

(
max

{
k∏
i=1

[0;xi, . . . , xk, 1, 3],

k∏
i=1

[0;xi, . . . , xk, 1, 4, 1, 2]

})2βn

= 1.

A quick computer search for the values of α4 and β4 shows that

0.15472 < α4 ≤ D(η1) ≤ β4 < 0.15488.

5. Local structure of K

Recall that K is a Cantor set. In particular, any x ∈ K is accumulated by a
sequence xn ∈ K with xn 6= x. In what follows, we adapt the proof of Theorem 3 in
[7] to show that x is accumulated by Cantor sets of positive Hausdorff dimensions
included in K.

In this direction, let us take ξ(n) = (ξ
(n)
j )j∈Z ∈ Σ such that xn = Lσ(ξ(n)). We

have xn = 7 · lim supj→∞([0; 1, 4, ξ
(n)
j+1, ξ

(n)
j+2, . . . ] + [0; 1, 4, ξ

(n)
j−1, ξ

(n)
j−2, . . . ]).

Given δ > 0, we can fix n0 ∈ N large such that, for each n ≥ n0, one has

|Lσ(ξ(n)) − x| < δ and |7([0; 1, 4, ξ
(n)
j+1, ξ

(n)
j+2, . . . ] + [0; 1, 4, ξ

(n)
j−1, ξ

(n)
j−2, . . . ]) − x| < δ

for infinitely many j ∈ N.
Let N = dδ−1e and, for each j and n as above, consider the finite sequence with

2N + 1 terms (ξ
(n)
j−N , . . . , ξ

(n)
j , . . . , ξ

(n)
j+N ) =: S(j, n). By the pigeonhole principle,

there exists a finite string S such that, for infinitely many values of n, the string S
appears infinitely many times as S(j, n), i.e., there is an infinite set A ⊂ N so that
for each n ∈ A we can find j1(n) < j2(n) < . . . with lim

i→∞
(ji+1(n)− ji(n)) =∞ and

S(ji(n), n) = S for all i ≥ 1.
Consider the sequences β(i, n) for i ≥ 1, n ∈ A given by

β(i, n) = (ξ
(n)
ji(n)+N+1, ξ

(n)
ji(n)+N+2, . . . , ξ

(n)
ji+1(n)+N

).

Since the sequence (xn)n∈A is not constant, there are (i1, n1) and (i2, n2) so that
β(i1, n1) and β(i2, n2) can not be expressed as concatenations of copies of some
finite string γ. This implies that B = {β(i1, n1)β(i2, n2), β(i2, n2)β(i1, n1)}Z is a
Bernoulli subshift of Σ such that {Lσ(β) : β ∈ B} is a portion of K included in
the (2δ)-neighborhood of x. By Proposition 2.16 of [2], {Lσ(β : β ∈ B)} contains a
Cantor set of positive Hausdorff dimension, so that the argument is complete.

6. Local dimension of K near φ2

The Hausdorff dimension d(t) of LB7 ∩ (−∞, t) is not α-Hölder continuous near
φ2: otherwise, the restriction of d to LB7∩ [φ2, φ2 +ε] would be a α-Hölder continu-
ous function from a set of Hausdorff dimension d(φ2+ε) to the interval [0, d(φ2+ε)];
since this interval is non-trivial when ε > 0 (thanks to the result from the previous
section), its Hausdorff dimension is 1 and, a fortiori, d(φ2 + ε) ≥ α for all ε > 0, a
contradiction with the continuity of d at the point φ2 (where d(φ2) = 0).
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[3] P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in H(2), Israel J. Math. 151

(2006), 281–321.
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