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Abstract. About 25 years ago, Jacob Palis proposed his global conjecture, i.e., an ambitious

collection of five statements aiming to describe the asymptotic behaviors of the majority of

the orbits for a dense set of dynamical systems. Furthermore, Jacob Palis formulated more

conjectures intended to pave a way to solve the global conjecture: in a nutshell, he suggests

to focus on establishing his global conjecture near two types of bifurcations called homoclinic

tangencies and heterodimensional cycles because he predicts that these two bifurcations can be

densely found outside the well-understood realm of uniformly hyperbolic systems.

In this survey article, we review the historical context behind some of Palis’ conjectures and,

after that, we briefly discuss some landmarking results towards these conjectures.
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1. Brief prehistory of Palis’ conjectures

1.1. Poincaré’s “méthodes nouvelles de la mécanique celeste”. The revolutionary works

of Henri Poincaré (circa 1890) in relation to the fundamental question of the stability of the solar

system in celestial mechanics famously introduced a huge amount of new methods for the study of

ordinary differential equations. For instance:

• Poincaré advocated in [42] that one should seek for qualitative properties of general ordinary

differential equations because, despite its usefulness in some practical applications, the

quantitative techniques describing the solutions of the problems in celestial mechanics

usually lead to divergent series expansions1;

• Poincaré said in [41] that the notion of homoclinic orbits deserves a special attention in

the qualitative theory of ordinary differential equations because

“... rien n’est plus propre à nous donner une idée de la complication de tous les

problèmes de dynamique ...”

• etc.

The modern definition of homoclinic orbit of a diffeomorphism f : M → M of a compact

manifold M goes as follows. Recall that a periodic point p ∈ M of f is a fixed point fn(p) = p

of some iterate fn := f ◦ · · · ◦ f︸ ︷︷ ︸
n times

of f . Moreover, the minimal period k of a periodic point p is the

smallest integer k ∈ N with fk(p) = p. In this setting, the orbit {fn(q) : n ∈ Z} of a point q 6= p

is homoclinic to a periodic point p of minimal period k whenever fnk(q)→ p as n→ ±∞, that is,

the orbit of q is accumulates the orbit of p both in the past and the future.

In 1935, George Birkhoff confirmed Poincaré’s foresight about dynamical complications associ-

ated to homoclinic orbits by showing that a “generic” homoclinic orbit is accumulated by periodic

orbits of arbitrarily high (minimal) period: in particular, the presence of a “generic” homoclinic

orbit forces the existence of infinitely many periodic points!

In subsequent years, Cartwright and Littlewood [14], [21] and [22], and Levinson [20] did exten-

sive studies of homoclinic orbits in certain ordinary differential equations coming from Engineering

problems. The intrinsic difficulty in the hard analytical approaches of Cartwright–Littlewood and

Levinson motivated Steve Smale to try to find a soft geometrical explanation for the dynamical

complexity steaming from “generic” homoclinic orbits.

After deeply thinking about this question on the beaches of Rio de Janeiro [46], Steve Smale

found in 1967 the key geometric mechanism behind the results of Poincaré, Birkhoff, Cartwright–

Littlewood, and Levinson: in a nutshell, the dynamical complexity observed near a general homo-

clinic orbit is due to the features of the so-called Smale’s horseshoe.

1It is worth to notice that the article [42] has an incredible history: its first version won in 1889 a prize created

by king Oscar of Sweden, but the text was completely rewritten before its publication in 1890 after L. Phragmén

detected some serious difficulties in the portion of the initial version implicitly related to homoclinic orbits (cf. [5]

and [48] resp. for excellent accounts in English and French resp. of this fruitful mistake of Poincaré).
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1.2. Smale’s horseshoes associated to transverse homoclinic orbits. Let f : M → M be

a diffeomorphism possessing a hyperbolic2 periodic point p ∈M of period k ∈ N.

By the stable manifold theorem3, the stable and unstable sets

W s(p) := {q ∈M : fnk(q)→ p as n→ +∞} and Wu(p) := {q ∈M : fnk(q)→ p as n→ −∞}

of p are injectively immersed submanifolds of M . In this context, a transverse homoclinic orbit to

p is the orbit of a point q ∈ (W s(p) ∩Wu(p)) \ {p} such that TqM = TqW
s(p)⊕ TqWu(p).

The basic shape found by S. Smale near transverse homoclinic orbits is:

p

fN (R)

R
q

Figure 1. Smale’s horseshoe.

In a few words, this picture is saying that a transverse homoclinic point q to a periodic point

p gives rise to a rectangle R which is mapped by some appropriate iterate F = fN into a region

fN (R) resembling a horseshoe.

From this figure, S. Smale inferred that the maximal invariant set Λ :=
⋂
n∈Z

Fn(R) consisting

of all F -orbits never escaping R is a hyperbolic set of F in the sense of the following definition:

Definition 1. A compact g-invariant4 subset H ⊂M is called a hyperbolic set of a diffeomorphism

g : M → M if there are some constants C > 0, 0 < λ < 1 and a splitting TxM = Es(x) ⊕ Eu(x)

for each x ∈ H such that:

• the splitting is equivariant : dg(x) · Es(x) = Es(g(x)) and dg(Eu(x)) = Eu(g(x));

• the subbundles of the splitting are asymptotically contracted5: ‖dgn(x) · vs‖ ≤ Cλn‖vs‖
and ‖dg−n(x) · vu‖ ≤ Cλn‖vu‖ for all n ≥ 0, vs ∈ Es(x) and vu ∈ Eu(x).

Moreover, S. Smale exploited the hyperbolic structure of the maximal invariant set Λ :=⋂
n∈Z

Fn(R) to prove that F |Λ is a Markov process in disguise: if S0 and S1 are the connected

components of R ∩ F (R), then the map h : Λ → {0, 1}Z := Σ associating to x ∈ Λ the symbolic

itinerary h(x) := (ai)i∈Z of its F -orbit6 turns out to be a topological conjugacy between F |Λ and

2I.e., the spectrum of the differential dfk(p) : TpM → TpM doesn’t intersect the unit circle.
3See Appendix 1 of [37] for instance.
4That is, g(H) = H.
5Here, ‖.‖ stands for a norm associated to some choice of Riemannian metric on M .
6I.e., ai ∈ {0, 1} is defined by F i(x) ∈ Sai
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a Bernoulli shift on two symbols in the sense that h is a homeomorphism with h(F (x)) = σ(h(x))

where σ : Σ→ Σ is the shift dynamics given by σ((ai)i∈Z) = (ai+1)i∈Z.

In particular, this allowed S. Smale to recover G. Birkhoff’s theorem (mentioned in Subsection

1.1 above) that the transverse homoclinic orbit q is accumulated by periodic orbits of arbitrarily

high periods: indeed, this happens simply because F |Λ is topologically conjugated to σ and the

set of periodic orbits of σ is easily shown to be dense in Σ !

1.3. Uniformly hyperbolic diffeomorphisms. The successful analysis of Smale’s horseshoes

was vastly extended by several mathematicians (including Smale, Anosov, Sinai, and their students)

to a large class of systems called (uniformly) hyperbolic diffeomorphisms.

Even though there is no consensus in the literature about the “perfect” definition of hyperbolic

diffeomorphisms, it is widely accepted that the minimal7 requirement for a diffeomorphism f :

M → M to be called hyperbolic is the assumption that its limit set8 (controlling the asymptotic

behaviour of all orbits) is a hyperbolic set of f .

In any event, the theory of hyperbolic diffeomorphisms is particularly beautiful because it pro-

vides a fairly complete panorama of the topological and statistical features of systems belonging

to certain open subsets of the space Diffr(M) of Cr-diffeomorphisms of M . For example, it is

explained in Bowen’s book [12] that if f : M → M is a hyperbolic C2-diffeomorphism, then one

has

• finiteness of hyperbolic attractors capturing Lebesgue almost every orbit : there is a finite

collection of hyperbolic sets Λ1, . . . ,Λk of f of the form Λj = {fn(qj) : n ∈ Z}, qj ∈ M ,

1 ≤ j ≤ k, whose basins of attractions

B(Λj) := {x ∈M : lim
n→+∞

dist(fn(x),Λj) = 0}

are open subsets of M such that
k⋃
j=1

B(Λj) has full Lebesgue measure on M ;

• topological dynamics of attractors described by Markov subshifts: for each 1 ≤ j ≤ k, the

restriction f |Λj of f to Λj is topologically semi-conjugated to a subshift of finite type9;

• statistical description of dynamics via physical measures: each Λj , 1 ≤ j ≤ k, supports an

ergodic probability measure µj whose basin of attraction

B(µj) :=

{
x ∈M : lim

n→+∞

1

n

n−1∑
k=0

ϕ(fk(x)) =

∫
ϕdµj ∀ϕ ∈ C0(M,R)

}

has positive Lebesgue measure, and, moreover,
k⋃
j=1

B(µj) has full Lebesgue measure on M .

7In fact, some authors prefer to work with the following stronger notion: a diffeomorphism f : M → M is

hyperbolic when there is a finite collection ∅ = U0 ⊂ U1 ⊂ · · · ⊂ Un = M of open sets such that, for each 1 ≤ j ≤ n,

one has that f(Uj) ⊂ Uj and the maximal invariant set
⋂
k∈Z

fk(Uj \ Uj−1) is hyperbolic.

8I.e., the closure of the set of accumulation points of all f -orbits.
9Namely, the shift dynamics on the space of bi-infinite paths on a strongly connected, directed, finite graph.
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Furthermore, it is explained in Shub’s book [45] that the subset of hyperbolic Cr-diffeomorphisms

is open in Diffr(M): in particular, any g ∈ Diff2(M) C2-close to a hyperbolic diffeomorphism

f ∈ Diff2(M) also has a finite number of attractors supporting physical measures whose basins

capture Lebesgue almost every orbit.

1.4. Homoclinic tangencies and Newhouse phenomena. The marvelous paradigm created

by the theory of uniformly hyperbolic diffeomorphisms leads naturally to the question of how

frequent are hyperbolic diffeomorphisms in Diffr(M).

A celebrated answer to this question was provided by Sheldon Newhouse [31], [32], [33] in the

seventies: he showed that the space of hyperbolic diffeomorphisms of a compact surface M2 misses

entire open subsets of Diff2(M2).

Before giving the precise statements of some of Newhouse’s results, we need to recall some

definitions. A horseshoe K of a diffeomorphism f : M → M is an infinite, totally disconnected,

hyperbolic set of the form K = {fn(x) : n ∈ Z} =
⋂
n∈Z

fn(U) for some x ∈M and some neighbor-

hood U of K such that both subbundles Es and Eu in Definition 1 are non-trivial. A periodic

point p belonging to a horseshoe K of a C2-diffeomorphism f : M2 → M2 of a compact surface

M2 displays a quadratic homoclinic tangency at q ∈ (W s(p) ∩Wu(p)) \ {p} whenever W s(p) and

Wu(p) meet tangentially with distinct curvatures at q.

For later reference, we fix small neighborhoods U of the horseshoe K and V of the homoclinic

orbit O(q) := {fn(q) : n ∈ Z} of q as indicated below.

U

p

V

q

Figure 2. Dynamics near a horseshoe exhibiting a quadratic tangency.

If U is a sufficiently small C2-neighborhood of f , then all dynamical objects in Figure 2 above

admit continuations10: for any g ∈ U , the maximal invariant set Kg =
⋂
n∈Z

gn(U) is a horseshoe,

the periodic point p has a continuation into a nearby periodic point pg of g, and the compact curves

cs(f) and cu(f) inside W s(p) and Wu(p) containing p and q and crossing V have continuations

10See, e.g., the book [37] and the references therein for more details.
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into a nearby compact curves cs(g) and cu(g) in the stable and unstable manifolds of pg crossing

V . This permits to organize the parameter space U as U = U− ∪ U0 ∪ U+, where

• g ∈ U− ⇐⇒ cs(g) and cu(g) don’t intersect;

• g ∈ U0 ⇐⇒ cs(g) and cu(g) have a quadratic tangency at a point qg in V ;

• g ∈ U+ ⇐⇒ cs(g) and cu(g) have two transverse intersection points in V .

By the implicit function theorem, a quadratic tangency at q means that U0 is a codimension 1

hypersurface dividing U into the two connected open subsets U− and U+. The figure below shows

the decomposition U = U− ∪ U0 ∪ U+ of the parameter space and the features on phase space of

the elements of U−, U0 and U+.

V

V

V

U
U+

U−
U0

Figure 3. Organization of the parameter space U .

In his seminal works, Newhouse used the notion of thickness11 τ(C) of Cantor sets C of the real

line R to detect some situations where U+ does not contain hyperbolic diffeomorphisms.

Theorem 2 (Newhouse). Let f be a C2-diffeomorphism of a compact surface M2 exhibiting a

horseshoe K containing a periodic point p of period n ∈ N displaying a quadratic homoclinic

tangency as above. Suppose that:

• K is thick, i.e., τ(W s(p) ∩K) · τ(Wu(p) ∩K) > 1;

• f contracts the area near p, i.e., |det dfn(p)| < 1.

Then, the subset R∞ ⊂ U+ of diffeomorphisms with infinitely many sinks12 is residual in the Baire

category sense. In particular, a diffeomorphism in U+ can not be hyperbolic.

In the remainder of this subsection, we give a sketch of the proof of this theorem via persistent

tangencies and a renormalization scheme giving sinks related to dissipative periodic points.

11See, e.g., Chapter 4 of [37] for the definition and basic properties of the thickness.
12Recall that a sink is a periodic point s of period m such that all eigenvalues of dfm(s) have moduli < 1.
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1.4.1. Thick horseshoes and persistence of tangencies. The generalized stable manifold theorem13

asserts that the stable set W s(x) := {y ∈ M : dist(fn(y), fn(x)) → 0 as n → +∞} of any point

x in a horseshoe K of a C2-diffeomorphism f : M2 → M2 is an injectively immersed C2-curve

depending continuously on x, that is, the family of stable sets W s(x), x ∈ K, is a continuous

lamination with C2 leaves.

It is known that the laminations above provided by the invariant sets can extended14 into a

stable, resp. unstable foliation Fs(f), resp. Fu(f) of the neighborhood U of K.

Since W s(p) and Wu(p) have a quadratic tangency at q, the foliations Fs(f) and Fu(f) meet

tangentially along a curve `(f) containing q: for obvious reasons, `(f) is called line of tangencies.

If we consider small neighborhoods W s
loc(p) and Wu

loc(p) of p in its stable and unstable sets,

then the Cantor sets W s
loc(p) ∩K and Wu

loc(p) ∩K can be mapped into ` = `(f) via the unstable

and stable holonomies πuf and πsf : by definition, πsf (x) ∈ W s(x) ∩ ` and πuf (y) ∈ Wu(y) ∩ ` for

x ∈Wu
loc(p)∩K and y ∈W s

loc(p)∩K. Observe that the intersection between the resulting Cantor

sets Ku = πsf (Wu
loc(p)∩K) and Ks = πuf (W s

loc(p)∩K) describes all tangencies between the stable

and unstable laminations of the horseshoe K near V , that is, by our assumptions, Ks ∩Ku = {q}.

p q

`

Ku

Ks

Figure 4. The line of tangencies ` and the Cantor sets Ks and Ku: the crosses

are points in Ku and the dots are points in Ks.

The picture above is perturbed when we consider g ∈ U+. Once again, the relevant dynami-

cal objects have continuations: the invariant laminations of Kg extend into stable and unstable

foliations Fs(g) and Fu(g) giving rise to a line of tangencies `(g) containing two Cantor sets

Ks(g) = πug (W s
loc(pg) ∩ Kg) and Ku(g) = πsg(W

u
loc(pg) ∩ Kg) defined via the unstable and sta-

ble holonomies πug and πsg. Also, the intersection Ks(g) ∩ Ku(g) still accounts for all tangencies

between the stable and unstable laminations of the horseshoe Kg.

13See Appendix 1 of [37] and references therein (especially [18]).
14Such an extension exists by the results of W. de Melo [16] and it heavily depends on the fact that f is a

diffeomorphism of a 2-dimensional manifold.
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`(g)

Ku(g)
Ks(g)

Figure 5. The line of tangencies `(g) and the Cantor sets Ks(g) and Ku(g) for

g ∈ U+: the crosses are points in Ks(g) and the dots are points in Ku(g).

Here, Newhouse uses the assumption that K is thick and the fact that the convex hulls Is(g)

and Iu(g) of Ks(g) and Ku(g) in `(g) are linked15 when g ∈ U+ imply that Ks(g)∩Ku(g) 6= ∅ for

all g ∈ U+. In particular, the quadratic homoclinic tangency at q associated to the periodic point

p in the thick horseshoe K of f persists when g ∈ U+:

Proposition 3. Under the assumptions of Theorem 2, the stable and unstable laminations of the

horseshoe Kg intersect tangentially at some point in V for all g ∈ U+.

1.4.2. Renormalization, sinks, and conclusion of the proof of Theorem 2. Recall that we are study-

ing a quadratic homoclinic tangency associated to a periodic point p of period n ∈ N such that

|det dfn(p)| < 1. By continuity, this implies |det dgn(pg)| < 1 for all g ∈ U . Thus, if λg < 1 < σg

denote the eigenvalues of dgn(p), then |λg · σg| = |det dgn(pg)| < 1.

By Proposition 3, given g0 ∈ U+, we know that the stable and unstable laminations of Kg0

meet tangentially at some point in V . Since the stable and unstable manifolds of the periodic

point pg0 are dense in the stable and unstable laminations of Kg0 (cf. Chapter 2 of [37]), one can

apply arbitrarily small perturbations to g0 ∈ U+ so that there is no loss of generality in assuming

that W s(pg0) and Wu(pg0) meet tangentially at some point in the region V . Starting from this

quadratic tangency, one gets the following picture for diffeomorphisms gµ ∈ U+ close to g0:

15I.e., Is(g) ∩ Iu(g) 6= ∅, but Is(g) 6⊂ Iu(g) and Iu(g) 6⊂ Is(g).
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p

Bm

γ·λmgµm

µm

σ−m
gµm

σ−m
gµm

σ−2m
gµm

Figure 6. Choice of renormalization domain Bm for gµm .

As it is shown in Chapter 3 of [37], one can carefully choose parameters16 µm (m ∈ N) such that

• µm → 0 as m→ +∞ and

• the map gmµm |Bm can be renormalized17 in such a way that the renormalizations Gm of

gmµm |Bm C2-converge18 to the endomorphism (x̃, ỹ) 7→ (ỹ, ỹ2).

Next, we observe that the endomorphism (x̃, ỹ) 7→ (ỹ, ỹ2) has an attracting fixed point at

(x̃, ỹ) = (0, 0). Therefore, by C2 convergence of Gm towards this endomorphism, we conclude that

gmµm has an attracting fixed point in Bm for all m sufficiently large. In other words, gµm has a sink

in the region V for all µm sufficiently small.

This last statement can be reformulated as follows. For each m ∈ N, denote by Rm = {g ∈ U+ :

g has m sinks}. Note that Rm is open for all m ∈ N (because any sink is persistent under small

perturbations of the dynamics). Moreover, since g0 ∈ U+ was arbitrary in the previous argument,

we also have that R1 is dense in U+.

At this stage, the idea of Newhouse is to iterate this argument to show that the set

R∞ =
⋂
m∈N

Rm

16In principle, the parameters µ must vary in some infinite-dimensional manifold in order to gµ parametrize a

neighborhood of g0, but for sake of simplicity of the exposition, we will think of this parameter as a real number

µ ∈ R measuring the distance between the line W s(pgµ )∩ V and the tip of the parabola Wu(pgµ )∩ V as indicated

in Figure 6.
17That is, one can perform an adequate µm-dependent change of coordinates φµm on gmµ |Bm to get a new

dynamics Gm = φ−1
µm ◦ gmµ |Bm ◦ φµm .

18The convergence of the diffeomorphisms Gm towards an endomorphism is natural in view of the area-

contraction condition |det dfn(p)| < 1: in fact, gmµm becomes strongly area-contracting as m→∞ and consequently

gmµm |Bm converges to a curve and Gm converges to an endomorphism of this curve as m→∞.
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of diffeomorphisms of U+ with infinitely many sinks is residual in Baire category sense (and, in

particular, R∞ is dense in U+). Since Rm is open in U+ for all m ∈ N and R1 is dense in U+, it

suffices to prove that Rm+1 is dense in Rm for all m ∈ N to conclude that R∞ is residual.

In this direction, one starts with g0 ∈ Rm with m periodic sinks O1(g0), . . . ,Om(g0). By Propo-

sition 3, we know that the stable and unstable laminations of Kg0 meet tangentially somewhere

in V . Since W s(pg0), resp. Wu(pg0), is dense in the stable, resp. unstable, lamination of Kg0 , we

can assume (up to performing an arbitrarily small perturbation on g0) that W s(pg0) and Wu(pg0)

meet tangentially at some point qg0 ∈ V and g0 has m periodic sinks. Next, we select T a small

neighborhood of qg0 such that none of the periodic sinks passes through W , i.e., W ∩ Oi(g0) = ∅
for each i = 1, . . . ,m. By repeating the “renormalization” arguments above (with V replaced by

T ), one can produce a sequence of diffeomorphisms (gµj )j∈N converging to g0 as j →∞ such that

gµj has a sink O(gµj ) passing through T . Because the sinks Oi(gµj ) don’t pass through T for all j

sufficiently large, this means that O(gµj ) is a new sink of gµj , that is, we obtain that gµj ∈ Rm+1

for all j sufficiently large. Since gµj → g0 as j →∞, we conclude that Rm+1 is dense in Rm.

In order to complete the sketch of the proof of Theorem 2, we note that there is no hyperbolic

diffeomorphism in U+: in fact, we saw in Subsection 1.3 that a hyperbolic diffeomorphism g ∈ U+

would force the existence of an open subset of U+ whose elements possess a finite number of

hyperbolic attractors, a contradiction with the fact that R∞ is dense in U+.

1.5. Heterodimensional cycles. The set of hyperbolic diffeomorphisms of a compact 3-manifold

M3 also misses entire open subsets of Diff1(M3). In fact, Christian Bonatti and Lorenzo Dı́az [8]

showed that the existence of open sets U ⊂ Diff1(M3) containing a residual subset R ⊂ U such

that each g ∈ R displays infinitely many sinks. For this sake, they introduced a notion of persistent

connection19 between two hyperbolic periodic points p and q of h ∈ Diff1(M3), and they proved

that if f ∈ Diff1(M3) possesses a persistent connection between two periodic hyperbolic points p

and q of periods n and m such that dfn(p) has a non-real eigenvalue |λ(p)| < 1, dfm(q) has a non-

real eigenvalue |σ(q)| > 1, and |det dfn(p)| < 1, then there is a neighborhood U of f containing a

residual subsetR ⊂ U such that any g ∈ R displays infinitely many sinks20. Moreover, they noticed

that these persistent connections can be constructed with the aid of a special type of horseshoe

called blender (originally built in [9]).

In a nutshell, a blender is a horseshoe Γ inside a cube C = [0, 1]3 whose image under f has

the shape in Figure 7 below. In this picture, the local unstable manifolds of the elements of

Γ are segments parallel to the x-axis, and the projection of f(C) ∩ C along the x-axis to the

wall W = {0} × [0, 1]2 is the pair of rectangles R1 ∪ R2 in Figure 7 below. In this way, we

get an expanding dynamical system F : R1 ∪ R2 → W with the property that the Cantor set

19Namely, there is a subset D ⊂ Diff1(M3) such that D is a small neighborhood of h and, for each g ∈ D, there

exists xg ∈M3 with pg , qg ∈ O(xg).
20It is worth to compare this statement with Newhouse’s phenomenon in Theorem 2.
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Ω =
⋂
n∈N

F−n(W ) intersects21 any vertical segment {0} × {y} × [0, 1] with y close to 1/2. Note

that this property is a sort of “unlikely transversality” because Ω has topological dimension 0 and

a curve has topological dimension 1, so that an intersection between these subsets of the space

W of topological dimension 2 is “topologically unlikely”. In any event, this curious property of

Ω extends to the horseshoe Γ in the sense that any C1-curve of length ≥ 1 which is C1-close to

{1/2} × {1/2} × [0, 1] must intersect Wu(Γ). See the original paper [9] and the short expository

article [7] for more details.

R1

R2

W

W

C

f

C

f(C)

Figure 7. Blender horseshoe.

The blender horseshoe Γ allows us to create persistent connections along the following lines. Let

p1 ∈ Γ be a periodic point whose local unstable manifold passes near {1/2}×{1/2}×[0, 1]. Suppose

that q1 is a hyperbolic periodic point forming an heterodimensional cycle with p1 in the sense that

dim(Eu(q1)) = 2 = dim(Es(p1)), dim(Es(q1)) = 1 = dim(Eu(p1)), W s(p1) intersects transversely

Wu(q1) at some point, and W s(q1) contains an almost vertical curve in the cube C intersecting

Wu(p1) (see Figure 8 below). Note that the intersections between W s(q1) and Wu(p1) are never

transverse (because they are 1-dimensional submanifolds of M3), so that the heterodimensional

cycle involving p1 and q1 might seem fragile as any intersection between W s(q1) and Wu(p1) can

be easily destroyed. Nonetheless, the key property of the blender horseshoe Γ ensures that, after

C1-small perturbations of the dynamical system, q1 will form an heterodimensional cycle with some

point of Γ (as the unstable lamination Wu(Γ) has a persistent intersection with W s(q1)), and this

fact can be exploited to see that p1 and q1 have a persistent connection. In particular, this gives

plenty of persistent connections since it is not hard to see that any pair of hyperbolic periodic points

21This happens basically because there is an interval I containing 1/2 such that, for each n ∈ N, the vertical

projection of F−n(W ) contains {0} × I × {0}.
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p and q such that W s(p), resp. W s(q), intersects transversely Wu(p1), resp. Wu(q1), and Wu(p),

resp. Wu(q), intersects transversely W s(p1), resp. W s(q1), also has a persistent connection.

p1

q1
W s(q1)

Wu(q1)

W s(p1)

Wu(p1)

Figure 8. Heterodimensional cycle.

1.6. End of a dream? We saw in §1.4 and §1.5 above that the bifurcations of certain homo-

clinic tangencies and heterodimensional cycles lead to open sets of diffeomorphisms which are not

uniformly hyperbolic. In particular, it is not possible to employ the beautiful results in §1.3 to

describe the dynamics of most orbits of a dense set of systems.

On the other hand, Jacob Palis gave a lecture in 1995 (in a conference in honor of Adrien

Douady) expressing his view that some of the nice properties enjoyed by uniformly hyperbolic

systems should also be true for many dynamical systems. As it turns out, this lecture led to an

article [35] where Palis converted his vision into a conjecture whose precise formulation is discussed

in the next section.

2. Brief partial review of the first 25 years of history of Palis’ conjectures

Let Mn be a compact n-dimensional manifold. We will always assume that Mn has no boundary

when n ≥ 2 and M1 = [0, 1]. Given r ≥ 1, we denote by Dr(Mn) the set of Cr-diffeomorphisms

of Mn when n ≥ 2 and the set of Cr-maps of [0, 1] when n = 1.
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Informally speaking, Palis conjectures that the dynamics of a dense subset of systems in Dr(Mn)

can be described in terms of a finite number of attractors supporting physical measures which are

metrically and stochastically stable. In other words, Palis believes that some of the features of

uniformly hyperbolic systems mentioned in §1.3 above should extend to a dense subset of Dr(Mn).

Logically, it is hard to appreciate the discussion in the previous paragraph without knowing

what it is meant by attractor, physical measure, metric and stochastic stability. So, let us now

define each one of these notions.

First, it is worth to note that the word “attractor” has several meanings depending on the

context: we refer the reader to Milnor’s article [30] for a nice account of this topic. For our

purposes, an attractor A of f ∈ Dr(Mn) is a subset of the form A = {fn(x) : n ∈ Z}, x ∈ Mn,

whose basin of attraction

B(A) := {y ∈Mn : lim
n→+∞

dist(fn(y), A) = 0}

has positive Lebesgue measure.

Secondly, a physical measure22 µ of f ∈ Dr(Mn) is a f -invariant supported on an attractor A

whose basin of attraction B(A) intersects the basin of attraction of µ

B(µ) :=

{
z ∈Mn : lim

n→+∞

1

n

n−1∑
k=0

ϕ(fk(z)) =

∫
ϕdµj ∀ϕ ∈ C0(Mn,R)

}

in a subset of positive Lebesgue measure.

Thirdly, we say that an attractor A of f ∈ Dr(Mn) is metrically stable if for each k ∈ N one has

that a generic k-parameter family (ft)t∈[−1,1]k ⊂ Dr(Mn) with f0 = f has the property that for all

ε > 0 there exists δ > 0 such that for Lebesgue almost every t ∈ [−δ, δ]k the element ft ∈ Dr(Mn)

possesses finitely many attractors whose union of basins of attraction coincide with B(A) modulo

a subset of Lebesgue measure < ε. In other words, from the point of view of the Lebesgue measure,

after “typical” perturbations, nearly all points in the basin of the original attractor will have orbits

which are still described by finitely many attractors of the perturbed system.

Finally, we say that an attractorA of f ∈ Dr(Mn) is stochastically stable in its basin of attraction

if A carries a physical measure µ such that for any k-parameter family (ft)t∈[−1,1]k ⊂ Dr(Mn)

with f0 = f we have that for each weak-∗ neighborhood V of µ there exists δ > 0 so that, for

Lebesgue almost every choice of w ∈ B(A) ∩B(µ) and (t1, . . . , tj , . . . ) ∈ ([−δ, δ]k)∞, the sequence

of probability measures

1

n

n∑
j=1

δftj ◦···◦ft1 (w)

22Some authors prefer to say simply that a f -invariant measure µ is physical whenever its basin of attraction

B(µ) has positive Lebesgue measure. However, we will stick to the definition where physical measures are attached

to attractors because it is not natural to dissociate these objects in the context of Palis’ conjectures.
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converges in the weak-∗ topology to an element of V . In other terms, the statistics of the orbits of

most points in B(µ) ∩B(A) under “typical” small random perturbations of f is still described by

a probability measure close to µ.

2.1. Formal statement of Palis’ global conjecture. The global (main) conjecture by Palis

asserts that there exists a dense subset D ⊂ Dr(Mn) such that for any f ∈ D one has the

following four properties:

(i) f possesses finitely many attractors whose basins of attraction cover a subset of Mn with

full Lebesgue measure.

(ii) each attractor of f supports a physical measure.

(iii) each attractor of f is metrically stable.

(iv) each attractor of f is stochastically stable.

Moreover, if n = 1 (i.e., for one-dimensional systems), then Palis says that we also have that

(v) for a generic k-parameter family (ft)t∈[−1,1]k ⊂ Dr(M1), the attractors of ft are regular

(i.e., periodic sinks) or stochastic (i.e., carry an invariant probability measure which is

absolutely continuous with respect to the Lebesgue measure on M1) for Lebesgue almost

every t ∈ [−1, 1]k.

In summary, Palis conjectures that the dynamics of Lebesgue almost all orbits of many systems

are described by finitely many attractors which are probabilistically stable.

Remark 4. The statement above can be found at the end of the first section of the article [35] and

at Subsection 2.7 of the paper [36]. Also, the reader will find in these references that Palis believes

that similar statements should be true for continuous-time systems (i.e., flows and vector-fields),

but, for the sake of simplicity of exposition, we will stick to the discrete-time cases here.

2.2. Palis’ program: reduction of global conjecture to analysis of certain bifurcations.

Besides proposing his global (main) conjecture, Palis suggested that its solution could be found in

the detailed study of the bifurcations arising from the perturbations of homoclinic tangencies and

heterodimensional cycles (cf. the second section of [35] and the Subsection 3.3 of [36]).

More concretely, Palis thinks that the two phenomena described in §1.4 and §1.5 above are the

sole obstructions for the denseness of uniformly hyperbolic systems in Dr(Mn) when n ≥ 2: the

subset B of f ∈ Dr(Mn), n ≥ 2, exhibiting a homoclinic tangency23 or a heterodimensional cycle24

is dense in the complement of the closure of the subset of uniformly hyperbolic systems in Dr(Mn).

If the statement in the previous paragraph is correct, then one could try to establish Palis’

global conjecture by showing that the bifurcations of homoclinic tangencies and heterodimensional

cycles contain systems satisfying items (i) to (v) above, i.e., by perturbing / unfolding homoclinic

tangencies and heterodimensional cycles to get the conclusions of Palis’ global conjecture.

23I.e., a hyperbolic periodic point whose invariant manifolds meet tangencially at some point.
24I.e., a finite collection of hyperbolic periodic points p1, . . . , pm such that their stable manifolds have different

dimensions and W s(pi+1) ∩Wu(pi) 6= ∅ for all i = 1, . . . ,m (with the convention that pm+1 = p1).
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2.3. Some partial results towards Palis’ global conjecture. As the reader might suspect, it is

impossible to review in a short survey the huge literature developed around Palis’ global conjecture

in the last 25 years. For this reason, we chose to briefly discuss below two low-dimensional settings

where striking progresses were made.

2.3.1. Palis’ global conjecture for one-dimensional dynamical systems. Since the early stages of the

theory of one-dimensional real and complex maps, it was quickly realized that the behaviour of the

orbits of the critical points have a great influence on the global dynamics of the map: for instance,

Fatou proved that a rational map of the Riemann sphere with degree d ≥ 2 is uniformly hyperbolic

if and only if the orbit of each critical point converges to a periodic sink.

Therefore, it is natural to start the quest of understanding the dynamics of one-dimensional maps

by looking at those with a single critical point. It is clear that such maps can be found among

polynomials of degree 2 and, in a certain sense, the quadratic family fc(x) = x2 + c provides the

most emblematic examples of unimodal maps.

The quadratic family hides an amazing amount of distinct dynamical behaviours in its simple

appearance. For example, Jakobson [19] showed that the set of parameters c ∈ [−2, 0) such that fc

is stochastic (i.e., preserves an absolutely continuous invariant probability measure) has positive

Lebesgue measure, and Lyubich [23] and Graczyk and Światek [17] independently established that

the set of parameters c ∈ [−2, 1/4] such that fc is regular (i.e., possesses a periodic sink) is open

and dense in [−2, 1/4]. Since it is not hard to check that the regular and stochastic behaviours

can’t coexist, we conclude that the regular and stochastic parameters c ∈ [−2, 1/4] pop up in a

complicated way inside [−2, 1/4].

After that, Lyubich [24] famously established in 2002 that the union of the subsets of regular

and stochastic parameters in c ∈ [−2, 1/4] has full Lebesgue measure in [−2, 1/4], so that the fifth

item of Palis’ global conjecture is true for the quadratic family.

The proofs of the results in the previous paragraphs are quite long, but, as we hinted above,

their hearts lie in the careful analysis of the orbit of the critical point at x = 0: for example, the

regular parameters arise when the orbit of the critical point converges to a periodic sink and the

stochastic parameters often arise when the orbit of the critical point is slowly recurrent25.

Subsequently, Avila and Moreira [4] proved in 2003 that the conclusion of the fifth item of Palis’

global conjecture is also true for generic families of the so-called S-unimodal maps. On the other

hand, Palis’ global conjecture is still not fully solved for generic families of one-dimensional systems

(despite the efforts of several authors including Bruin, Rivera-Letelier, Shen and van Strien [13]).

25For example, Benedicks and Carleson [6] found many stochastic parameters by performing an exclusion of

parameters c failing the Collet–Eckmann condition |(fnc )′(fc(0))| ≥ exp(n2/3) for all large n (and this condition

should be thought as a sort of slow recurrence condition on the orbit of the critical point 0 because (fnc )′(fc(0)) =
n−1∏
j=0

f ′c(f
j
c (c)) and |f ′c(x)| = 2|x| is proportional to the distance between x and 0).
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2.3.2. Physical measures beyond uniform hyperbolicity. The notion of uniform hyperbolicity was

generalized by several authors in order to describe the dynamics of large classes of systems. Among

these concepts, the theories of partially hyperbolic systems and non-uniformly hyperbolic systems

saw huge developments in the last three decades. By employing several techniques from these

theories, Alves, Bonatti and Viana were able to prove in 2000 that a robust class of partially

hyperbolic attractors with definite non-uniformly hyperbolic behaviours support physical measures

and, hence, they satisfy the second item of Palis’ global conjecture.

More precisely, Bonatti and Viana [10] considered f ∈ Dr(Mn), r ≥ 2, n ≥ 3, possessing an

attractor Λ =
⋂
n∈N

fn(U), where U is an open set with f(U) ⊂ U , which is partially hyperbolic and

mostly contracting in the sense that there is a df -invariant decomposition TΛM = Ecs ⊕ Eu and

some constant 0 < λ < 1 such that

• Eu is uniformly expanding and the largest expansion26 along Ecs is dominated by the

weakest expansion along Eu, i.e., ‖df−1|Eu(x)‖ ≤ λ and ‖df |Ecs(x)‖ · ‖df−1|Eu(f(x))‖ ≤ λ

for all x ∈ Λ;

• the subbundle Ecs is mostly contracting, i.e., for any disk Du contained in some unstable

manifold Wu(y), y ∈ Λ, one has λcs(x) := lim sup
n→∞

1
n log ‖dfn|Ecs(x)‖ < 0 for a subset of

x ∈ Du with positive Lebesgue measure.

In this context, Bonatti and Viana showed that the second item of Palis’ global conjecture holds for

the attractor Λ of f because, up to a subset of zero Lebesgue measure, the basinB(Λ) =
⋂
n∈N

f−n(U)

of attraction of Λ coincides with the union of the basins B(µ1), . . . , B(µk) of finitely many physical

measures µ1, . . . , µk supported on Λ.

Very roughly speaking, Bonatti and Viana obtained the result in the previous paragraph (which

covers certain open subsets ofDr(Mn) containing no uniformly hyperbolic system) via the following

construction. Let mDu be the normalized Lebesgue measure on a disk contained in some unstable

manifold of a point in Λ. The work of Pesin and Sinai [40] ensures that the accumulation points of

the Cesàro averages 1
n

n−1∑
j=0

f j∗ (mDu) of the push-forwards of mDu under the iterates of f produce

u-Gibbs states, i.e., f -invariant probability measures whose conditional measures along unstable

manifolds are absolutely continuous with respect to Lebesgue. Furthermore, Pesin’s theory of

non-uniformly hyperbolic systems can be used to show that u-Gibbs states are physical measures

when Ecs is mostly contracting (cf Remark 2.5 in [10]). At this point, Bonatti and Viana develop

these facts to prove that any u-Gibbs state leads to ergodic physical measures with large, mutually

disjoint basins covering B(Λ) modulo a subset of zero Lebesgue measure, so that Λ supports a

finite number of physical measures whose basins capture Lebesgue almost every point in B(Λ).

Afterwards, Alves, Bonatti and Viana [2] considered f ∈ Dr(Mn), r ≥ 2, n ≥ 3, possessing a

compact subset K which is positively invariant (i.e., f(K) ⊂ K), partially hyperbolic and mostly

26In comparison with the notion of uniform hyperbolicity in Definition 1, we do not request uniform contraction

along Ecs (and, actually, Ecs is allowed to exhibit some weak expansion).
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expanding in the sense that there is a df -invariant decomposition TKM = Es ⊕ Ecu and some

constant 0 < λ < 1 such that

• Es is uniformly contracting and the smallest contraction along Ecu dominates the weakest

contraction along Es, i.e., ‖df |Es(x)‖ ≤ λ and ‖df |Es(x)‖ · ‖df−1|Ecu(f(x))‖ ≤ λ for all

x ∈ K;

• the subbundle Ecu is mostly expanding, i.e., lim sup
n→∞

1
n

n∑
j=1

log ‖df−1|Ecu(fj(x))‖ < 0 for a

subset of x ∈ K with positive Lebesgue measure.

In this setting, Alves, Bonatti and Viana proved that Λ =
⋂
n∈N

fn(K) supports a physical measure

(and, hence, Λ satisfies the second item of Palis’ global conjecture). As it turns out, the “mostly

expanding” situation is more difficult than the “mostly contracting” case because the subbundle

Ecu does not have the nice uniform expansion properties required by Pesin and Sinai to build

u-Gibbs states eventually leading to physical measures. In order to overcome this problem, Alves,

Bonatti and Viana noticed that we still can produce physical measures by looking at the accumula-

tion points of 1
n

n−1∑
j=0

(f j)∗(mD), where mD is the normalized Lebesgue measure on a disk D almost

tangent to Ecu, because the mostly expanding condition on Ecu permits to get uniform expansion

along a sequence with positive frequency of hyperbolic times thanks to the so-called Pliss lemma27.

Remark 5. In 2007, Alves, Araújo and Vásquez [1] exhibited open subsets of mostly expanding

partially hyperbolic diffeomorphisms f which are weakly stochastically stable (i.e., they satisfy a

weak form of the fourth item of Palis’ global conjecture) in the sense that the accumulation points

of Cesàro averages of Dirac masses along the orbits of random perturbations of f tend to convex

combinations of the physical measures of f when the size of the random noise goes to zero.

Remark 6. In 2018, Andersson and Vásquez [3] proposed a variant of the notion of mostly expand-

ing partially hyperbolic diffeomorphism, and they showed that their concept of mostly expanding

always lead to open subsets of Dr(Mn), r > 1 whose elements possess a finite number of physical

measures whose basins cover Lebesgue almost every point of Mn. In particular, mostly expanding

partially hyperbolic diffeomorphisms (in Andersson–Vásquez sense) form an open class of systems

verifying the analog of the first and third items of Palis’ global conjecture where “attractors” are

replaced by “physical measures”.

After the works of Alves, Bonatti and Viana, it is natural to ask whether the construction of

physical measures can be performed when the mostly contracting and/or the mostly expanding

conditions fail. In this direction, Tsujii [47] made a breakthrough in 2005 by establishing a version of

the first, second and third items of Palis’ global conjecture for partially hyperbolic endomorphisms

27This lemma ensures that if c > 0 is a constant such that
n∑
j=1
− log ‖df−1|Ecu(fj(x))‖ > 2c·n for all n sufficiently

large, then there is a subset T ⊂ N with positive density consisting of “uniformly hyperbolic times” in the sense

that
t∑

j=k

− log ‖df−1|Ecu(fj(x))‖ > c(t− k) for all t ∈ T and 0 ≤ k < t.
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of the 2-torus T2 = R2/Z2. More concretely, let PHr(T2) be the subset of Cr partially hyperbolic

endomorphisms of T2, i.e., Cr-maps f : T2 → T2 such that there exists a splitting TT2 = Ec⊕Eu

into 1-dimensional subbundles and some constants C > 0, µ > 1 with the following properties:

• Eu is uniformly expanding, i.e., ‖dfn|Eu‖ ≥ Cµn for all n ≥ 0;

• the strongest expansion along Ec is dominated by the weakest expansion along Eu, i.e.,

‖dfn|Ec‖ ≤ C−1µ−n‖dfn|Eu‖ for all n ≥ 0.

It is not difficult to check that PHr(T2) is an open subset of the space Cr(T2,T2) of smooth

self-maps of T2. Tsujii considered the subset Gr(T2) of f ∈ PHr(T2) possessing a finite number

of ergodic physical measures whose union of basins have total Lebesgue measure on T2 and he

established a version of the first and second items of Palis’ global conjecture for PHr(T2) by proving

that Gr(T2) is residual whenever r ≥ 19. Moreover, Tsujii obtained a version of the third item of

Palis’ global conjecture for PHr(T2) by showing that, for a generic family (ft)t∈[−1,1]k ⊂ PHr(T2),

one has that ft ∈ Gr(T2) for Lebesgue almost every t ∈ [−1, 1]k.

In a certain sense, the proof of Tsujii’s theorems above are divided into two regimes depending

on the behaviour of the central subbundle Ec of f ∈ PHr(T2). If Ec is “mostly contracting” or

“mostly expanding”, then the ideas of Alves, Bonatti and Viana can be used to get the desired

results. On the other hand, if Ec is “neutral”, then Tsujii obtains his results by proving that

certain transversality conditions ensure that the Pesin–Sinai method of construction of u-Gibbs

states (i.e., taking accumulation points of 1
n

n−1∑
j=0

(f j)∗(mγ) where mγ is the normalized Lebesgue

measure on a curve γ almost tangent to Eu) leads to invariant probability measures which are

absolutely continuous with respect to the Lebesgue measure mT2 of the 2-dimensional torus T2

and, a fortiori, physical measures. In a nutshell, the transversality conditions of Tsujii are setup

in order to force the iterates fn(γ) of γ to “almost fill” open subsets as n→∞ like it is indicated

in Figure 9 below. In this way, the iterates fn of f “spread” the one-dimensional density mγ over

open subsets by making it converge to a non-trivial density function on the 2-dimensional phase

space T2.

Remark 7. In 2019, Bortolotti [11] extended the scope of Tsujii’s results to include certain open

sets of Cr-diffeomorphisms of 3-manifolds, r ≥ 2, possessing partially hyperbolic attractors with

neutral central direction and Lipschitz stable lamination.

2.4. Some partial results towards Palis’ program. Similarly to the case of Palis’ global

conjecture, we dispose of an important literature providing partial progress towards Palis’ program.

Hence, we will not try to pursue here the virtually impossible task of reviewing the whole body of

articles in this topic, but rather we shall focus in the sequel on three outstanding theorems.

2.4.1. The first part of Palis’ program for C1-diffeomorphisms. In 2000, Pujals and Sambarino

[44] completed the first part of Palis’ program for C1-diffeomorphisms of compact surfaces M2 by
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fn(γ)

Figure 9. Tsujii’s transversality condition on almost unstable curves.

showing that any f ∈ D1(M2) can be C1-approximated by an uniformly hyperbolic diffeomorphism

or by a diffeomorphism displaying a homoclinic tangency.

The proof of Pujals–Sambarino theorem starts with some fundamental ideas of Mañé [25] on

his famous solution of the C1-stability conjecture asserting that uniformly hyperbolic systems are

characterised by the stability of their phase portraits under small C1-perturbations.

More concretely, let U1 be the open subset of f ∈ D1(M2) which is far from homoclinic

tangencies. In this context, our goal is to show that the elements of U1 are C1-approximated

by uniformly hyperbolic diffeomorphisms. For this sake, one begins by proving that a generic

element f ∈ U1 possesses only hyperbolic periodic points whose stable and unstable subspaces

have an angle uniformly bounded away from zero. Since the periodic points of a generic element

f ∈ D1(M2) are dense in its non-wandering28 set Ω(f) (thanks to the celebrated Pugh’s C1-closing

lemma [43]), we can use the splittings of these (hyperbolic) periodic points to build a dominated

splitting over Ω(f), i.e., a df -invariant splitting TΩ(f)M
2 = E ⊕ F such that, for some constants

C > 0 and 0 < λ < 1, one has

‖dfn(x)|E‖ · ‖df−n(fn(x))|F ‖ ≤ Cλn

for all x ∈ Ω(f) and n ∈ N (or, in plain terms, the largest expansion along E is dominated

by the weakest contraction along F ). Therefore, we reduced the task of deriving the uniform

hyperbolicity of a generic element f ∈ U1 to show that a dominated splitting E ⊕ F over Ω(f) is

uniformly hyperbolic.

At this point, Mañé proved in the context of the C1-stability conjecture that the dominated

splitting E⊕F over Ω(f) must be uniformly hyperbolic, i.e., of the form Es⊕Eu with ‖dfn|Es‖ ≤
Cλn and ‖df−n(x)|Eu‖ ≤ Cλn for all x ∈ Ω(f) and n ∈ N, because a dominated non-hyperbolic

28I.e., the set of points x ∈M2 such that for each neighborhood U ∈ x there exists n > 0 such that fn(U)∩U 6= ∅.
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splitting would allow to construct non-hyperbolic periodic points for some C1-perturbations of f

and this fact can easily be used to show that the phase portrait of f is not stable under small

C1-perturbations.

In the setting of Pujals–Sambarino, we are no longer assuming that f is structurally stable, but

merely that f is a generic element of U1. In particular, the coexistence of dominated splitting

and non-hyperbolic periodic points is now allowed and we have to use again our assumption that

f ∈ U1 is far from homoclinic tangencies to analyse the dominated splitting E ⊕ F . Here, Pujals

and Sambarino take inspiration from another work of Mañé [26] where it is shown that if Λ is

a compact invariant subset of a C2-endomorphism h : N → N , N = [0, 1] or S1, such that

Λ contains no critical point of h and all periodic points in Λ are sources, then either Λ is an

uniformly expanding set of h or (N = S1 and) h is topologically conjugated to an irrational

circle rotation. More precisely, they “reinterpreted” the dominated splitting condition as a sort

of “absence of dynamically critical points” in order to vastly generalise Mañé’s ideas about one-

dimensional endomorphisms to get the following result. Let Λ ⊂ Ω(f) be a compact invariant

subset of the non-wandering set of a C2-diffeomorphism g ∈ D2(M2). Suppose that Λ admits a

dominated splitting TΛM
2 = E ⊕ F and all periodic points in Λ are hyperbolic of saddle type.

Then, Λ = H ∪ C1 ∪ · · · ∪ Ck, where H is a hyperbolic set of g, Ci, i = 1, . . . , k, are closed curves

which are gmi -periodic for some mi ∈ N and normally hyperbolic29, and each gmi |Ci : Ci → Ci is

topologically conjugated to an irrational rotation on a circle S1.

Since the closed curves supporting topological irrational rotations can be easily destroyed by

perturbations, the statement from the previous paragraph could be used by Pujals and Sambarino

to conclude that a generic element f ∈ U1 is uniformly hyperbolic, as desired.

In 2015, Crovisier and Pujals [15] established a topological version of the first part of Palis’

program for C1-diffeomorphisms of higher-dimensional compact manifolds Mn, n ≥ 3, by showing

that any f ∈ D1(Mn) can be approximated by a diffeomorphism displaying a homoclinic tangency,

a heterodimensional cycle or which is essentially uniformly hyperbolic in the sense that there is a

finite number of hyperbolic attractors whoses basins cover an open and dense subset of Mn.

2.4.2. Second part of Palis’ program for C∞ surface diffeomorphisms. In the direction of trying to

prove Palis’ global conjecture for smooth surface diffeomorphisms, it is natural to investigate how

frequent is the Newhouse phenomenon of locally generic coexistence of infinitely many sinks and

sources after the unfolding of tangencies along generic one-parameter families.

In 1987, Newhouse, Palis and Takens considered again the context of §1.4, that is, a smooth

surface diffeomorphism f : M → M possessing a horseshoe K =
⋂
n∈Z

fn(U) containing a periodic

point p displaying a quadratic homoclinic tangency at q ∈ V . They proved in [34] and [38] that if

K has Hausdorff dimension strictly less than one and (gt)t∈[−1,1] is a generic one-parameter family

with g0 = f , then Λgt :=
⋂
n∈Z

gnt (U ∪ V ) is a (uniformly) hyperbolic horseshoe for most t near 0 in

29I.e., the restriction of E ⊕ F to Ci has the form Es ⊕ TCi or TCi ⊕ Eu.
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the sense that

lim
ε→0

Leb({|t| < ε : Λgt is not a horseshoe})
2ε

= 0.

Intuitively, this result is explained by the ideas that Λgt is a horseshoe when the stable and unstable

Cantor sets Ks(gt) and Ku(gt) defined in §1.4.1 do not intersect, Ks(gt) and Ku(gt) are close to

Ks(f) + t and Ku(f) for |t| small, and the set of parameters t such that Ks(f) + t and Ku(f)

intersect has zero Lebesgue measure because (Ks(f) + t) ∩ Ku(f) 6= ∅ if and only if t belongs

to the arithmetic difference Ku(f)−Ks(f) which has zero Lebesgue measure since its Hausdorff

dimension is strictly less than one thanks to our assumption on K.30

On the other hand, Newhouse phenomenon indicates that we can not expect Λgt to be a (uni-

formly) hyperbolic horseshoe for all t when K has Hausdorff dimension larger than one. Neverthe-

less, Palis and Yoccoz [39] made a tour-de-force in 2009 in a long work (of 217 pages) by showing

that we can still expect Λgt to be a non-uniformly hyperbolic horseshoe for most t near 0.

Even though the precise definition of a non-uniformly hyperbolic horseshoe Λgt0 is very technical,

the reader must keep in mind that they are “saddle-type objects” in the sense that their local stable

and unstable sets

W s(Λgt0 ) :=
⋂
n≤0

gnt0(U ∪ V ) and Wu(Λgt0 ) :=
⋂
n≥0

gnt0(U ∪ V )

have zero Lebesgue measure on M2. In particular, such a Λgt0 can not carry sinks or sources,

and, hence, the presence of a non-uniformly hyperbolic horseshoe for gt0 prevents the Newhouse

phenomenon on U ∪ V for the parameter t0.

Anyhow, the concrete situation considered by Palis and Yoccoz in [39] was the following. We

have a smooth surface diffeomorphism f possessing a horseshoe K containing two periodic points

ps and pu lying in distinct orbits such that W s(ps) and Wu(pu) have a first31 quadratic tangency

at a point q . If the stable and unstable Cantor sets Ks and Ku of K have Hausdorff dimensions

ds and du satisfying32

(ds + du)2 + max{ds, du}2 < (ds + du) + max{ds, du},

then a generic one-parameter family (gt)|t|≤1 with g0 = f displays a non-uniformly hyperbolic

horseshoe Λgt near K ∪ O(q) for most t near zero in the sense that

lim
ε→0

Leb({|t| < ε : Λgt is a non-uniformly hyperbolic horseshoe})
2ε

= 1.

Closing this text, let us say a few words about the general idea behind Palis–Yoccoz work [39].

By taking inspiration on Yoccoz proof of Jakobson’s theorem [49], one tries to define a notion

30As the dimension of Ku(f) − Ks(f) is at most the Hausdorff dimension of the product set Ku(f) × Ks(f)

whose dimension coincides with the dimension of K.
31In the sense that there are neighborhoods U of K and V of q such that

⋂
n∈Z

fn(U ∪ V ) is reduced to the union

of K and the orbit of q.
32Note that this condition permits to consider certain horseshoes K whose Hausdorff dimension ds+du is slightly

larger than one.
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of strongly regular parameter t detecting the non-uniform hyperbolicity of Λgt . For this sake, one

introduces some coordinates on U∪V so that (some fixed powers of) g is an affine-like33 hyperbolic

map on U and a folding (“Hénon-like”) map on V . In this context, Palis and Yoccoz propose to

capture the non-uniformly hyperbolic points in Λgt using decreasing sequences of domains and

images of certain classes of affine-like hyperbolic iterates of gt. Here, there is no guarantee that

the subset of points captured by this scheme cover a significant portion of Λgt , but Palis and

Yoccoz noticed that this is the case whenever the number of bi-critical34 affine-like iterates of g is

relatively small. At this stage, Palis and Yoccoz complete the proof of their theorem by performing

an exclusion of parameters (based on their assumption on ds and du) to ensure that gt has few

bi-critical affine-like iterates for most t near zero.

Remark 8. Besides consulting the original article [39], the curious reader can find more informations

about non-uniformly hyperbolic horseshoes on the texts [27], [28] and [29].
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